Conclusion
CONCLUSION

The research programme under the thesis entitled “Bio-intensive management of tomato wilt caused by *Ralstonia solanacearum* E.F. Smith (Yabuuchi *et al.*, 1995)” enabled to isolate two potential bioagents, viz., *P. fluorescens* (IHRPf-24) and *B. subtilis* (IHRBs-39) for the management of bacterial wilt in tomato. These bioagents induce systemic resistance in tomato plants against bacterial wilt pathogen, *R. solanacearum* and also increase per cent seed germination, seed vigour and plant growth, being a plant growth promoting rhizobacteria. The bioagents were integrated with other components like farm yard manure, green manure and chemicals to get adequate control over bacterial wilt disease in tomato. Thus, an integrated disease management strategy, which includes soil amendments with farmyard and green manure, bioagents and chemicals, has been developed for the management of bacterial wilt in tomato, which is cost effective, eco-friendly and environmentally safe. This strategy can also be extended for other crops, wherever the bacterial wilt is a problem. The efficient screening technique developed for screening germplasm (tomato, brinjal and chilli) for bacterial wilt resistance under this programme will be of great use to the research institutions and private industries for developing hybrids resistant to bacterial wilt.