8. BIBLIOGRAPHY

Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell Online 15: 63-78

Chan SJ, Al-Sarraj T, Shahruwan SH, Fedorova AV, Shin JA (2012) The bZIP Dimer localizes at DNA full-sites where each basic region can alternately translocate and bind to subsites at the half-site. *Biochemistry* **51**: 6632-6643

Degenhardt RF, Bonham-Smith PC (2008) Arabidopsis ribosomal proteins RPL23aA and RPL23aB are differentially targeted to the nucleolus and are disparately required for normal development. Plant physiology 147: 128-142

FAOSTAT. 2012. Statistical database of food and agriculture organization. URL: http://faostat.fao.org/

current view from the points of convergence in the stress signaling networks.
Current opinion in plant biology 9: 436-442

Arabidopsis following infection by plant-parasitic nematodes Meloidogyne
incognita and Heterodera schachtii. Molecular plant pathology 8: 595-609

system I. Alterations in glutathione reductase activity. Plant Physiology 76: 615-
621

Comparative analysis of ESTs in response to drought stress in chickpea (C.
arietinum L.). Biochemical and biophysical research communications 376: 578-583

predicted interactome for Arabidopsis. Plant physiology 145: 317-329

informatics resource. Nucleic acids research 32: D258-D261.

RT-PCR. Genome research 6: 995-1001

Gill L, Husaini S (1986) Cytological observations in Leguminosae from southern
Nigeria. Willdenovia: 521-527

Golldack D, Luking I, Yang O (2011) Plant tolerance to drought and salinity: stress
regulating transcription factors and their functional significance in the cellular
transcriptional network. Plant cell reports 30: 1383-1391

Fei Z (2010) Transcriptional profiles of drought-responsive genes in modulating
transcription signal transduction, and biochemical pathways in tomato. Journal
of Experimental Botany 61: 3563-3575

Granlund I, Hall M, Kieselbach T, Schroder WP (2009) Light induced changes in
protein expression and uniform regulation of transcription in the thylakoid
lumen of Arabidopsis thaliana. PloS one 4: e5649

A reconsideration. Plant Systematics and Evolution 212: 135-141

Genome research 9: 282-296

network. BMC bioinformatics 12: 161

Guiltinan MJ, Miller L (1994) Molecular characterization of the DNA-binding and
dimerization domains of the bZIP transcription factor, EmBP-1. Plant molecular
biology 26: 1041-1053

He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. *The Plant Journal* 44: 903-916

Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and β-amylase from sweet potato. *Molecular and General Genetics* **244**: 563-571

Jung HW, Kim KD, Hwang BK (2005) Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTP1) and the enhanced resistance of the CALTP1 transgenic Arabidopsis against pathogen and environmental stresses. Planta 221: 361-373

McIntosh KB, Degenhardt RF, Bonham-Smith PC, Belzile F (2011) Sequence context for transcription and translation of the Arabidopsis RPL23aA and RPL23aB paralogs. Genome 54: 738-751

NDMC (National Drought Mitigation Center; http://drought.unl.edu/)

Pande VS, Beauchamp K, Bowman GR (2010) Everything you wanted to know about Markov State Models but were afraid to ask. *Methods* **52**: 99-105

Pfaffl MW (2004) Quantification strategies in real-time PCR. *AZ of quantitative PCR* 1: 89-113

Roy B (1933) Studies in the development of the female gametophyte in some Leguminous crop plants of India. *Indian Journal of Agricultural Science* **3**

Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. The Plant Cell Online 13: 61-72

Sharma A, Rathod PS, Chavan M (2011) Response of pigeonpea (Cajanus cajan) to drought management practices under rainfed conditions. Karnataka Journal of Agricultural Sciences 23

Shrivastava M, Sharma D, Singh L (1973) Karyotype analysis in 15 varieties of *Cajanus cajan* (L.) Millsp and *Aytlosia lineata* (W. and A.). *Cytologia*

Sreelakshmi C, Shivani D, Kumar CS (2010d) Studies on genotype x environment interaction and stability in white seeded pigeonpea (Cajanus cajan L.) genotypes. Legume Research 33: 217-220

Subbarao GV, Nam NH, Chauhan YS, Johansen C (2000b) Osmotic adjustment, water relations and carbohydrate remobilization in pigeonpea under water deficits. Journal of plant physiology 157: 651-659

Tran LSP, Mochida K (2010b) Functional genomics of soybean for improvement of productivity in adverse conditions. *Functional & integrative genomics* 10: 447-462

Van der Maesen L (1986) Cajanus DC and Atylosia W. & A.(Leguminosae). *Agricultural University Wageningen papers* 85: 4

tolerances to salt, drought, and diseases in transgenic tobacco. *Journal of experimental botany*: erp214

