LIST OF SYMBOLS

A Cross-section area of beam; Parameter in modified Phase term (7.5)

B Parameter in modified Phase term (7.5)

C Velocity of propagation of flexural wave

C₀ Rod wave velocity (velocity of propagation of Longitudinal wave)

C₂ Shear wave velocity (velocity of distorsional wave)

D Displacement of striker from the beginning of impact

E Young's Modulus; Young's Modulus of beam material (YB)

F Force

Fₘₐₓ Maximum contact force (3.7)

G Modulus of rigidity

H Hertz's constant (A.2.10)

H₁ Constant for the material of striker tip (A.2.10)

H₂ Constant for the material of beam (A.2.10)

I Centroidal second moment of area of cross-section of beam

K Radius of gyration of a cross-section about neutral axis of bar (6.6); coefficient of restitutions (3.4)

Kᵣ Scale factor (shear modulus of steel/shear modulus of rubber)

M Subscript for Model

P Subscript for Prototype; Time varying contact force between beam and striker.

Pₘₐₓ Equivalent maximum contact force

Pₙ Contact force between beam and striker after nth interval of time from the beginning of impact

R₁ Radius of hemispherical striker tip (A.2.10)

R₂ Radius of top edge of beam (A.2.10)

T Time measured from the beginning of impact
Hass attached spring (7.4)
Y Central deflection of lower fibre of beam
\(a \) Subscript; Beam parameter = \((EIg/AV)^{1/2}\)
\(b \) Subscript
\(c \) Acoustic velocity
\(d_{n-1} \) Distance moved by the centre of the striker in a time equal to \((n-1)T\) from the datum at the beginning of the impact
\(f_{m} \) Material fringe value
\(g \) Acceleration due to gravity
\(i \) Index number
\(j \) Index number
\(k \) Spring constant of Spring-mass system
\(k_{1} \) Coefficient in Rayleigh surface wave equation (6.3)
\(l \) Linear dimension; span of the beam (BS)
\(m \) Mass of the colliding body; mass of the striker (BM)
\(n \) Parameter in modified phase term (7.5); subscript denoting interval of time after impact
\(t \) Time
\(t' \) Equivalent time
\(t_{1} \) Time ranging from zero to \(T \) with an increment of \(dt_{1} \)
\(t_{d} \) Total duration of symmetrical triangular force history
\(t_{s} \) Duration of contact force
\(v \) Velocity of the colliding body; velocity of striker at an instant of time after impact
\(v_{0} \) Velocity of striker just before collision
\(\Delta v \) Change in velocity
\(v_{n} \) Velocity of striker after \(n \)th interval of time
\(y_{n} \) Central deflection of the beam after \(n \)th interval of time
\[\lambda \] Local deformation at impact point
\[\lambda_1 \] Coefficient used in the expression \(\lambda = \left[\frac{(1-2\nu)/(2-2\nu)}{(2-2\nu)} \right]^{\frac{1}{3}} \)
\[\lambda_n \] Contact deformation after nth interval of time
\[\gamma \] Density
\[f \] \(\gamma/g \) (Density/Acceleration due to gravity)
\[\nu \] Poisson's ratio
\[\lambda \] Wave length
\[\sigma \] Fibre stress in beam
\[\sigma_1 \] Instantaneous stress at a chosen point
\[\tau \] Small element of time (1/180 th of time period of fundamental mode of vibration of beam)
\[\omega \] Circular frequency of beam vibration (7.4)
\[\omega t \] Phase term (7.5)
\[\Gamma \] Dynamic amplification factor
\[\Gamma^* \] Modified dynamic amplification factor