TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>...viii</td>
</tr>
<tr>
<td>List of Photographs</td>
<td>...xi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>...xiii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>...xvi</td>
</tr>
<tr>
<td>Abstract</td>
<td>...xvii</td>
</tr>
<tr>
<td>List of Notations</td>
<td>...xix</td>
</tr>
</tbody>
</table>

CHAPTER I INTRODUCTION

1.1 General | ...1 |
1.2 Literature Survey |
 1.2.1 Cement Concrete | ...2 |
 1.2.2 Concept of Fibrous Concrete | ...3 |
 1.2.3 Definition of Steel Fibrous Concrete | ...10 |
 1.2.4 Steel Fibres | ...10 |
 1.2.5 Review of previous work on Beam Column Connections | ...12 |
1.3 Need for the present investigation | ...14 |

CHAPTER II MECHANICS AND PROPERTIES OF STEEL FIBROUS CONCRETE

2.1 Mechanics | ...18 |
2.2 Fracture Mechanics Concept | ...19 |
2.2.1 Modification of Griffith Theory

2.2.2 Crack Arrest Mechanism

2.2.3 Spacing Concept

2.3 Composite Materials Approach

2.4 Ultimate Strength

2.5 Fracture Toughness

2.6 Factors affecting properties of Fibrous Concrete

2.6.1 Relative Stiffness

2.6.2 Fibre Matrix Interfacial Bond

2.6.3 Fibre Matrix Strain Compatibility

2.7 Preparation of Fibre Reinforced Concrete

2.7.1 Mix Proportions

2.7.2 Mixing Methods

2.7.3 Compaction

2.7.4 Placing and Finishing

CHAPTER -III ANALYSIS OF REINFORCED FIBROUS CONCRETE ELEMENTS

3.1 General

3.2 Analysis of Fibrous Concrete Elements in Flexure

3.2.1 General

3.2.2 Method of Analysis

3.2.2.1 Assumptions

3.2.2.2 Flexural Analysis of Fibrous Concrete Section

3.2.2.3 Steps in Analysis
3.3 Shear Studies of Fibrous Concrete Elements ...

3.3.1 Ultimate Shear Strength of Fibre Reinforced Concrete and Modes of Failure ...

3.3.2 Theoretical Analysis ...

3.3.2.1 Ultimate Shear Strength of Reinforced Fibre Concrete Beams ...

CHAPTER - IV EXPERIMENTAL PROGRAMME

4.1 Test Programme ...

4.2 Materials ...

4.3 Specimen Types and Designation ...

4.4 Mix Proportioning ...

4.4.1 Check for Workability ...

4.4.2 Mixing Procedure ...

4.4.3 Measurement of Workability ...

4.4.4 Inverted Cone Apparatus ...

4.5 Casting and Curing of Specimens ...

4.6 Simulating Column Stub Loading ...

4.7 Instrumentation of Specimens ...

4.8 Testing Procedure ...

4.8.1 Compressive Strength ...

4.8.2 Flexural Tensile (Modulus of Rupture) Strength ...

4.8.3 Testing of Shear Beams ...

4.8.4 Testing of Column Beam Connections ...

CHAPTER - V CROSS TYPE BEAM-COLUMN CONNECTIONS

5.1 Test Specimen ...

...104
5.1.1 General
5.1.2 Design of Specimens with Conventional Concrete
5.1.3 Specimens with Steel Fibrous Concrete Throughout
5.1.4 Specimens with Steel Fibrous Concrete in Joint Region
5.2 Details of Casting Procedure
5.3 Instrumentation of Specimen
5.4 Testing of Specimen
5.5 Test Results and Observations
5.5.1 Onset of Flexural Cracking
5.5.2 Post Cracking Behaviour
5.5.3 Ultimate Load Carrying Capacity
5.5.4 Load Deflection Behaviour
 5.5.4.1 Static Single Cycle Load Behaviour
 5.5.4.2 Slow Cycle Fatigue Load Behaviour
5.5.5 Post Cracking Ductility
5.5.6 Rotational Capacity
5.5.7 Shear Capacity of Joints
5.5.8 Elimination of Shear Stirrups
5.5.9 Zone where S.F.C. is essential
5.5.10 Strain Carrying Capacity of S.F.C.

CHAPTER VI KNEE TYPE CONNECTIONS
6.1 Test Specimen
6.1.1 General
6.1.2 Dimensions and Size
6.2 Casting of Specimens ...177
6.3 Testing of Specimens ...178
6.4 Test Results and Observations ...178
6.4.1 Onset of Flexural Cracking ...196
6.4.2 Crack Growth after onset of cracking ...196
6.4.3 Ultimate Load carrying capacity ...196
6.4.4 Load Deflection Behaviour ...196
6.4.4.1 Static Single Cycle Load ...196
6.4.4.2 Slow Cycle Fatigue Load ...197
6.4.5 Post Cracking Ductility ...197
6.4.6 Spalling of concrete at Corners ...197
6.4.7 Rotational Capacity ...197
6.4.8 Shear Carrying Capacity ...198
6.4.9 Zone which requires S.F.C. ...198
6.4.10 Strain Carrying Capacity ...198

CHAPTER - VII TEE TYPE CONNECTIONS

7.1 Test Specimen ...207
7.1.1 Dimensions and Size ...207
7.2 Casting of Specimens ...208
7.3 Test Results and Observations ...208
7.3.1 Onset of Flexural Cracking ...222
7.3.2 Crack Growth after first cracking ...222
7.3.3 Ultimate Load carrying capacity ...222
7.3.4 Load Deflection Behaviour ...222
7.3.4.1 Static Single Cycle Load ...222
7.3.4.2 Slow Cycle Fatigue Load ...222
7.3.5 Post Cracking Ductility ...223
7.3.6 Spalling of Concrete ...223
7.3.7 Rotational Capacity ...224
7.3.8 Shear Carrying Capacity ...224
7.3.9 Zone which requires S.F.C. ...224

CHAPTER - VIII ANALYTICAL STUDIES OF TEST RESULTS

8.1 General ...231
8.2 First Flexural Crack Strength Ratio (F_{cr}) ...231
8.3 Crack Width Ratio (W_{cr}) ...234
8.4 Deflection Stiffness Ratio (D_{st}) ...236
8.5 Rotational Capacity Ratio (R_{cr}) ...238
8.6 Reliability of Analytical Conclusions ...240
8.7 Proposed Method of Design for Fibrous Concrete Connections ...241
 8.7.1 Ultimate Flexural Strength Equation ...241
 8.7.2 Ultimate Shear Strength Equation ...245
 8.7.3 Ultimate Compressive Strength Equation ...249
 8.7.4 Design Steps for Fibrous Concrete Connections ...250
8.8 Theoretical Prediction of Strength of Connections ...252
 8.8.1 Beam-Column Connections BB-1, BB-2, CC-1 & CC-2 ...252
 8.8.2 Beam-Column Connections C-1 & C-2 ...255
CHAPTER IX

CONCLUSIONS

9.1 General

9.2 Conclusions

9.2.1 Onset of Flexural Cracking

9.2.2 Crack Growth Phenomenon

9.2.3 Ultimate Load Carrying Capacity

9.2.4 Load Deflection Behaviour

9.2.5 Rotational Capacity

9.2.6 Post Cracking Ductility

9.2.7 Shear Capacity of Joints

9.2.8 Eliminating Shear Reinforcement

9.2.9 Zone in which S.F.C. is required

9.2.10 Simplicity in Construction

9.2.11 Restricted use of Fibrous Concrete

9.2.12 Adaptability of 'Limit design method'

9.3 Recommendation for further work

REFERENCES :

APPENDIX :