Table of Contents

INTRODUCTION

CHAPTER I REVIEW OF LITERATURE

1.1 Plasma membrane as a drug permeability barrier
 - 1.1.1 Ergosterol biosynthetic pathway
 - 1.1.2 Phospholipid biosynthetic pathways

1.2 Multidrug resistance proteins
 - 1.2.1 Mammalian MDR proteins
 - 1.2.1.1 Topology of P-gp
 - 1.2.1.2 Substrate specificity of P-gps
 - 1.2.1.3 Energetics of P-gp mediated drug transport
 - 1.2.1.4 Mechanism of P-gp mediated multidrug resistance
 - 1.2.1.5 Effect of lipid environment on the functioning of P-gp
 - 1.2.2 Yeast pleiotropic drug resistance (pdr) proteins
 - 1.2.2.1 PDR5
 - 1.2.2.2 Other yeast ABC transporters

1.3 Drug metabolism/detoxification system
 - 1.3.1 Multidrug resistance-associated proteins (MRPs)
 - 1.3.2 Glutathione S-transferases
 - 1.3.2.1 Classification of GSTs
 - 1.3.2.2 Microsomal GSTs
 - 1.3.2.3 Structure of GSTs
 - 1.3.2.4 Regulation of GSTs
 - 1.3.2.5 GSTs in yeast
 - 1.3.2.6 URE2 of *S. cerevisiae* exhibits homology to GSTs

1.4 Aims and scope of this work

CHAPTER II MATERIALS AND METHODS

2.1 Materials
 - 2.1.1 Chemicals and reagents
 - 2.1.2 Strains and plasmids
 - 2.1.3 Oligonucleotides
 - 2.1.4 Medium and buffer composition
 - 2.1.4.1 Medium composition
 - 2.1.4.2 Buffer composition

2.2 Methods
 - 2.2.1 Growth and maintenance of yeast strains
 - 2.2.2 Growth experiments
 - 2.2.3 Recombinant DNA methodology
 - 2.2.4 DNA purification from agarose gels
 - 2.2.5 Southern hybridization
 - 2.2.6 Isolation of gDNA from yeast
 - 2.2.7 PCR amplification
CHAPTER III CONSTRUCTION AND PHENOTYPIC CHARACTERIZATION OF ERGOSTEROL BIOSYNTHESIS DEFECTIVE STRAINS

3.1 Introduction 39
3.2 Results 40
 3.2.1 Construction of erg strains 40
 3.2.1.1 Construction of erg4A strain 40
 3.2.1.2 Construction of erg3A strain 40
 3.2.1.3 Construction of erg2A strain 40
 3.2.1.4 Construction of erg6A strain 41
 3.2.2 Growth profiles of erg strains 41
 3.2.3 Polyene antibiotic resistance of erg strains 42
 3.2.4 Drug sensitivity of erg strains 43
 3.2.5 Rhodamine 6G efflux assay in whole cells 44
 3.2.6 Plasma membrane fluidity experiments 45
3.3 Discussion 45

CHAPTER IV In vivo FUNCTIONAL ANALYSIS OF THE YEAST MULTIDRUG RESISTANCE PROTEIN, Pdr5p IN MEMBRANE ALTERED STRAINS OF S. cerevisiae

4.1 Introduction 48
4.2 Results 49
 4.2.1 Pdr5 pump efficiency in erg strains of S. cerevisiae that display pleiotropic drug sensitivity 49
 4.2.1.1 Pdr5p-mediated cycloheximide resistance 49
 4.2.1.2 Pdr5p-mediated drug resistance to crystal violet and enmetine 50
4.2.1.3 Estradiol toxicity and Pdr5p-mediated estradiol resistance in S. cerevisiae 51

4.2.2 Pdr5p pump efficiency in phosphatidylserine deficient mutants of S. cerevisiae 52
4.2.2.1 Construction of phosphatidyl serine deficient strains (cho1 Δ) 52
4.2.2.2 Pdr5p-mediated cycloheximide and crystal violet resistance 53
4.2.3 Does the Pdr5p function in the membrane altered strains correlate with fluidity of their plasma membrane? 54

4.3 Discussion 54

CHAPTER V GLUTATHIONE S-TRANSFERASES OF S. cerevisiae: EVALUATION OF THEIR ROLE IN PLEIOTROPIC DRUG SENSITIVITY/RESISTANCE IN YEAST 54

5.1 Introduction 57

5.2 Results 58
5.2.1 Identification of putative GSTs of S. cerevisiae from the yeast genome sequencing project 58
5.2.2 Disruption of the putative glutathione S-transferases of S. cerevisiae, YLL060C and YIR038C 59
5.2.3 Phenotypic analysis of gst1Δ, gst2Δ and gst1Δgst2Δ strains 61
5.2.3.1 Drug sensitivity 61
5.2.3.2 Differences in ade2 pigmentation 61
5.2.3.3 Glutathione S-transferase enzymatic activity 62
5.2.4 Overexpression of GST1 and GST2 in S. cerevisiae 62
5.2.4.1 Cloning of GST1 in the yeast multicopy plasmid, pRS426 62
5.2.4.2 Cloning of GST2 in the yeast multicopy plasmid, pRS426 63
5.2.4.3 Effect of overexpression of GST1 and GST2 63
5.2.5. Reporter gene assay with GST1 promoter 64
5.2.5.1 Construction of the reporter plasmid 64
5.2.5.2 β-galactosidase assay in the wild type strain of S. cerevisiae 64

5.3 Discussion 65

CHAPTER VI AN ANALYSIS INTO MINIMAL HOMOLOGY REQUIREMENT FOR EFFICIENT TARGETED GENE DISRUPTION IN Schizosacharomyces pombe 66

6.1 Introduction 67

6.2 Results 68
6.2.1 Is PCR-mediated direct gene disruption possible in S. pombe? 68
6.2.2 Does the efficiency of targeted gene disruption depends upon the length of the homologous sequence of the target gene? 70

6.3 Discussion 71

SUMMARY 73

BIBLIOGRAPHY 77