1. Introduction
2. Aims and objectives
3. Literature review
 3.1 Honey
 3.1.1 Introduction
 3.1.2 Composition
 3.1.3 Use of honey in ancient medicine
 3.1.4 Use of honey in modern medicine
 3.1.4.1 Honey in treatment of wounds
 3.1.4.2 Antibacterial activity of honey
 3.1.4.3 Honey in the treatment of inflammation and edema
 3.1.4.4 Honey in the treatment of diarrhoea
 3.1.4.5 Honey in the treatment of peptic ulcers
 3.1.4.6 Honey in the treatment of eye disorders
 3.2 Cytochrome P 450 enzymes
 3.2.1 Introduction to Cytochrome P 450 and types
 3.2.2 Cytochrome P450 - 3A4
 3.2.3 Cytochrome P 450 – 2C19
 3.2.4 Cytochrome P 450 – 2E1
 3.3 Drug efflux mechanism (P – Glycoprotein)
 3.4 Factors affecting bioavailability of drugs
 3.4.1 Physicochemical factors
 3.4.1.1 Formulation factors
 3.4.1.2 Dissolution rate
 3.4.1.3 Partition co-efficient
 3.4.1.4 Particle size
 3.4.2 Effect of macronutrients on drug absorption
 3.4.2.1 Carbohydrates
 3.4.2.2 Lipids
 3.4.2.3 Protein
3.5 Pharmacokinetic profile
 3.5.1 Carbamazepine
 3.5.2 Diltiazem
 3.5.3 Phenytoin
 3.5.4 Paracetamol
 3.5.5 Digoxin

4. Materials and Methods
 4.1 Pharmacokinetic study design
 4.1.1 Dose of honey and artificial honey
 4.2 GI motility study
 4.3 Pharmacokinetic study
 4.3.1 Carbamazepine
 4.3.2 Diltiazem
 4.3.3 Phenytoin
 4.3.4 Paracetamol
 4.3.5 Digoxin
 4.4 Pharmacokinetic analysis
 4.5 Statistical analysis

5. Results
 5.1 Effect of honey on carbamazepine kinetics
 5.1.1 Effect of artificial honey on carbamazepine kinetics
 5.2 Diltiazem kinetics
 5.2.1 Oral study
 5.2.2 IV study
 5.3 Effect of honey on phenytoin kinetics
 5.4 Effect of honey on paracetamol kinetics
 5.5 Gastric motility
 5.6 Effect of honey on digoxin kinetics

6. Discussion

7. Summary and Conclusion

8. Bibliography