List of Figures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>ASL/BSL Digit Signs</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Auslan Digit Signs</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>LSF Digit Signs</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>ISL Digit Signs</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>BSL Single Handed Alphabet Signs</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>ASL Single Handed Alphabet Signs</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>LSF Single Handed Alphabet Signs</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Auslan Single Handed Alphabet Signs</td>
<td>20</td>
</tr>
<tr>
<td>2.9</td>
<td>ISL Single Handed Alphabet Signs</td>
<td>21</td>
</tr>
<tr>
<td>2.10</td>
<td>ASL/BSL Double Handed Alphabet Signs</td>
<td>21</td>
</tr>
<tr>
<td>2.11</td>
<td>Auslan Double Handed Alphabet Signs</td>
<td>21</td>
</tr>
<tr>
<td>2.12</td>
<td>ISL Double Handed Alphabet Signs</td>
<td>22</td>
</tr>
<tr>
<td>2.13</td>
<td>Frames of ASL ‘Computer’ Sign</td>
<td>22</td>
</tr>
<tr>
<td>2.14</td>
<td>Frames of BSL ‘Computer’ Sign</td>
<td>22</td>
</tr>
<tr>
<td>2.15</td>
<td>Frames of LSF ‘Computer’ Sign</td>
<td>22</td>
</tr>
<tr>
<td>2.16</td>
<td>Frames of Auslan ‘Computer’ Sign</td>
<td>23</td>
</tr>
<tr>
<td>2.17</td>
<td>Frames of ISL ‘Computer’ Sign</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>The Proposed ISL Recognition System</td>
<td>61</td>
</tr>
<tr>
<td>3.2</td>
<td>The ISL Digit Signs Data Set</td>
<td>63</td>
</tr>
<tr>
<td>3.3</td>
<td>The ISL Single Handed Alphabet Signs Data Set</td>
<td>64</td>
</tr>
<tr>
<td>3.4</td>
<td>The ISL Double Handed Alphabet Signs Data Set</td>
<td>64</td>
</tr>
<tr>
<td>3.5</td>
<td>The ISL Specific Computer Terminology Word Data Set</td>
<td>65</td>
</tr>
<tr>
<td>3.6</td>
<td>Image Pre-Processing steps of ISL Signs</td>
<td>66</td>
</tr>
<tr>
<td>3.7</td>
<td>The ISL Static Sign Representing ’2’</td>
<td>67</td>
</tr>
<tr>
<td>3.8</td>
<td>Converted Binary Image of ISL Static Sign ‘2’ (of figure 3.7)</td>
<td>68</td>
</tr>
<tr>
<td>3.9</td>
<td>Binary Image ’2’ after Deletion of Unwanted Information (of figure 3.8)</td>
<td>69</td>
</tr>
<tr>
<td>3.10</td>
<td>(a) Original Image and</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>(b) Thresholded Skin Colour Detected Image</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.11</td>
<td>Example of implementation of Direct Pixel Value (DPV), (a) The pre-processed image. (b) Binary representation of the image (c) 1D conversion of binary image.</td>
<td>75</td>
</tr>
<tr>
<td>3.12</td>
<td>The Image Matrix Representing Static ISL Sign '2' (of figure 3.9)</td>
<td>76</td>
</tr>
<tr>
<td>3.13</td>
<td>Calculation of P_0 from the Pre-processed Sign Image '2' of ISL (of figure 3.12)</td>
<td>77</td>
</tr>
<tr>
<td>3.14</td>
<td>Calculation of P_1 from P_0 for Sign Image '2' of ISL (of figure 3.13)</td>
<td>77</td>
</tr>
<tr>
<td>3.15</td>
<td>Various Segmentation Levels of ISL Sign '2' (a) Extracted Features using Hierarchical Centroid Method at level 0, (b) at level 1 and (c) at level 2.</td>
<td>78</td>
</tr>
<tr>
<td>3.16</td>
<td>First Local Histograms of the Digit ISL Sign '2'</td>
<td>80</td>
</tr>
<tr>
<td>3.17</td>
<td>Second Local Histograms of the Digit ISL Sign '2'</td>
<td>80</td>
</tr>
<tr>
<td>3.18</td>
<td>Third Local Histograms of the Digit ISL Sign '2'</td>
<td>81</td>
</tr>
<tr>
<td>3.19</td>
<td>Example of an Artificial Neural Network Architecture</td>
<td>92</td>
</tr>
<tr>
<td>4.1</td>
<td>The Proposed Recognition System on ISL</td>
<td>99</td>
</tr>
<tr>
<td>4.2</td>
<td>Output of ISL Digits Produced by the System</td>
<td>103</td>
</tr>
<tr>
<td>4.3</td>
<td>An Unpredicted ISL Digit '9' by the Recognition System</td>
<td>104</td>
</tr>
<tr>
<td>4.4</td>
<td>The Output of the System on ISL Single Handed Alphabet</td>
<td>105</td>
</tr>
<tr>
<td>4.5</td>
<td>The Output of the Proposed System at Double Handed Alphabet Level</td>
<td>105</td>
</tr>
<tr>
<td>4.6</td>
<td>The Output of the Proposed System at 'Word' Level</td>
<td>106</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of Results Obtained from Naive Bayes Classifier vs. kNN on ISL Digits (Experiment I, Table 5.1)</td>
<td>112</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison of Results Obtained from Naive Bayes Classifier vs. kNN on ISL Digits (Experiment II, Table 5.1)</td>
<td>113</td>
</tr>
<tr>
<td>5.3</td>
<td>Performance of kNN Classifier against Direct Pixel Value and Hierarchical Centroid Feature Extraction Methods on ISL Digits</td>
<td>114</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.4</td>
<td>Performance of Neural Network Classifier against Direct Pixel Value and Hierarchical Centroid Feature Extraction Methods</td>
<td>115</td>
</tr>
<tr>
<td>5.5</td>
<td>The Proposed ISL Single Handed and Double Handed Character Recognition System</td>
<td>116</td>
</tr>
<tr>
<td>5.6</td>
<td>Performance of Neural Network Classifier against all Feature Vectors on ISL Single Handed Alphabet</td>
<td>118</td>
</tr>
<tr>
<td>5.7</td>
<td>Validation Performance of Local Histogram Features with Neural Network Classifier (Single Handed ISL Alphabet Signs)</td>
<td>120</td>
</tr>
<tr>
<td>5.8</td>
<td>Performance of Neural Network Classifier with Direct Pixel Value Features (Single Handed ISL Alphabet Signs)</td>
<td>122</td>
</tr>
</tbody>
</table>
| 5.9 | Misclassification Due to Shape Similarity Between Single Handed Alphabets ‘M’ and ‘S’, (a) ISL Single Handed Alphabet ‘M’
(b) ISL Single Handed Alphabet ‘S’ | 123 |
| 5.10 | Misclassification Due to Shape Similarity Between Single Handed Alphabets ‘C’ and ‘J’, (a) ISL Single Handed Alphabet ‘C’
(b) ISL Single Handed Alphabet ‘J’ | 123 |
<p>| 5.11 | Performance of Neural Network Classifier with Hierarchical Centroid Features (Single Handed ISL Alphabet) | 125 |
| 5.12 | Performance of Neural Network Classifier (Double Handed ISL Alphabet) | 127 |
| 5.13 | Performance of Neural Network Classifier with Direct Pixel Value Features (Double Handed ISL Alphabet) | 130 |
| 5.14 | Performance of Neural Network Classifier with Hierarchical Centroid Features (Double Handed ISL Alphabet) | 132 |
| 5.15 | Performance of Neural Network Classifier with Local Histogram Features (Double Handed ISL Alphabet) | 134 |
| 5.16 | The Proposed ISL Gesture Recognition System for Specific ISL Words | 134 |
| 5.17 | Comparison of Results of all Feature Vectors against kNN Classifier on ISL Word Data Set | 137 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.18</td>
<td>Comparison of Results of all Feature Vectors against Neural Network Classifier (ISL Word Data Set)</td>
<td>138</td>
</tr>
<tr>
<td>5.19</td>
<td>Classification Confusion Matrix of Neural Network Classifier against Direct Pixel Value Feature Vector (ISL Word Data Set)</td>
<td>139</td>
</tr>
<tr>
<td>5.20</td>
<td>Performance of Neural Network Classifier with Direct Pixel Value Feature Vector (ISL Word Data Set)</td>
<td>140</td>
</tr>
<tr>
<td>5.21</td>
<td>Classification Confusion Matrix of Neural Network against Direct Pixel with Bipolar Value Feature Vector (ISL Word Data Set)</td>
<td>141</td>
</tr>
<tr>
<td>5.22</td>
<td>Performance of Neural Network Classifier with Direct Pixel with Bipolar Value Feature Vector (ISL Word Data Set)</td>
<td>142</td>
</tr>
<tr>
<td>5.23</td>
<td>Classification Confusion Matrix of Neural Network against Hierarchical Centroid Feature Vector (ISL Word Data Set)</td>
<td>143</td>
</tr>
<tr>
<td>5.24</td>
<td>Performance of Neural Network Classifier with Hierarchical Centroid Feature Vector (ISL Word Data Set)</td>
<td>144</td>
</tr>
<tr>
<td>5.25</td>
<td>Comparison of Results Obtained from Direct Pixel Value and Hierarchical Centroid Feature Extraction Methods on kNN Classifier (ISL Word Data Set)</td>
<td>145</td>
</tr>
<tr>
<td>A.1</td>
<td>Performance of Decision Tree Classifier on ISL Digits</td>
<td>152</td>
</tr>
<tr>
<td>A.2</td>
<td>Performance of Decision Tree Classifier on ISL Single Handed Alphabets</td>
<td>153</td>
</tr>
<tr>
<td>A.3</td>
<td>Performance of Decision Tree Classifier on Double Handed ISL Alphabet</td>
<td>154</td>
</tr>
<tr>
<td>A.4</td>
<td>Performance of Decision Tree Classifier on ISL Word data Set</td>
<td>155</td>
</tr>
<tr>
<td>B.1</td>
<td>Performance of Multiclass SVM Classifier on ISL Digits</td>
<td>158</td>
</tr>
<tr>
<td>B.2</td>
<td>Performance of Multiclass SVM Classifier on ISL Single Handed Alphabets</td>
<td>159</td>
</tr>
<tr>
<td>B.3</td>
<td>Performance of Multiclass SVM Classifier on ISL Double Handed Alphabets</td>
<td>161</td>
</tr>
<tr>
<td>B.4</td>
<td>Performance of Multiclass SVM Classifier on ISL Specific Word Data Set</td>
<td>162</td>
</tr>
</tbody>
</table>