<table>
<thead>
<tr>
<th>Table No.</th>
<th>Particulars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trend in category-wise growth of paper mills in India.. 5</td>
</tr>
<tr>
<td>2</td>
<td>Symbols representing bleaching stages. .. 10</td>
</tr>
<tr>
<td>3</td>
<td>Components and properties of chlorination and extraction stage effluents. .. 15</td>
</tr>
<tr>
<td>4</td>
<td>Enzymes found in the extracellular fluid of ligninolytic cultures of P.chrysosporium. .. 43</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Particulars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Comparison of biobleaching potential of different fungi after 5 days of incubation with kraft pulp sheets made from wood and grasses at 25°C and 39°C. .. 80</td>
</tr>
<tr>
<td>2</td>
<td>CMCase, filter paper activity and β glucosidase production by four standard strains and isolate VJ₁, after 5 days submerged growth on cellulose powder, wood pulp and grass pulp at 39°C. .. 82</td>
</tr>
<tr>
<td>3</td>
<td>Production of ligninase by four standard strains and isolate VJ₁ on 5th and 6th day under stationary growth conditions in nitrogen deficient medium at 39°C. .. 83</td>
</tr>
<tr>
<td>4</td>
<td>Kappa number, viscosity and copper number values of mixed wood pulp after 3 days growth with indicated organisms under surface, suspended and shake conditions at 39°C. .. 85</td>
</tr>
<tr>
<td>5</td>
<td>Kappa number, viscosity and copper number values of mixed grass pulp after 3 days growth with indicated organisms under surface, suspended and shake conditions at 39°C. .. 86</td>
</tr>
<tr>
<td>6</td>
<td>Kappa number, viscosity and copper number values of eight different pulps after 3 days growth with P.chrysosporium K-3 and soil isolate VJ₁ under surface culture conditions at 39°C. .. 88</td>
</tr>
</tbody>
</table>
Effect of various sugars and glycerol (1%) used as carbon sources on kappa number, viscosity and copper number values of eucalyptus and khar grass pulps grown with *P. chrysosporium* K-3 for 3 days under surface culture at 39°C.

Effect of various buffering agents (10mM, pH 4.6) on kappa number, viscosity and copper number values of eucalyptus and khar grass pulps grown with *P. chrysosporium* K-3 for 3 days under surface culture at 39°C.

Effect of various surfactants on kappa number, viscosity and copper number values of eucalyptus and khar grass pulps grown with *P. chrysosporium* K-3 for 3 days under surface culture at 39°C.

Effect of various Tween 80 concentrations (0.01% to 0.1%) on kappa number, viscosity and copper number values of eucalyptus and khar grass pulps grown with *P. chrysosporium* K-3 for 3 days under surface culture at 39°C.

Effect of various nitrogen sources (2.4mM N) on kappa number, viscosity and copper number values of eucalyptus and khar grass pulps grown with *P. chrysosporium* K-3 for 3 days under surface culture at 39°C.

Effect of various chelators (1mM) on kappa number, viscosity and copper number values of eucalyptus and khar grass pulps grown with *P. chrysosporium* K-3 for 3 days under surface culture at 39°C.

Effect of various glycols (10mM) on kappa number, viscosity and copper number values of eucalyptus and khar grass pulps grown with *P. chrysosporium* K-3 for 3 days under surface culture at 39°C.

Characteristics of eucalyptus kraft pulp after three days growth with *P. chrysosporium* K-3 using improved medium under surface culture at 39°C.

Physical properties of handsheets made from unbleached and biobleached eucalyptus kraft pulps without and with PFI mill refining.
16 Effect of incubation time (0 to 3 days) on pulp characteristics during growth of *P. chrysosporium* K-3 on eucalyptus kraft pulp under surface culture at 39°C.

17 Study of handsheet properties of eucalyptus kraft pulp following growth with *P. chrysosporium* K-3 for different incubation intervals under surface culture at 39°C.

18 Study of handsheet properties of eucalyptus kraft pulp after PFI refining to a fixed freeness level (400 ml) following growth with *P. chrysosporium* K-3 for different incubation intervals under surface culture at 39°C.

19 Study of handsheet properties of unbleached and biobleached eucalyptus kraft pulp following PFI refining to three fixed freeness levels of 300, 350 and 400 ml.

20 Effect of concentration of mycelial inoculum on pulp characteristics after growth of *P. chrysosporium* K-3 on eucalyptus kraft pulp under surface culture conditions at 39°C.

21 Study of handsheet properties of eucalyptus kraft pulp without and with PFI refining to 400 ml freeness following growth with *P. chrysosporium* K-3 using different concentrations of mycelial inoculum under surface culture at 39°C.

22 Effect of glucose concentration on pulp characteristics after growth of *P. chrysosporium* K-3 on eucalyptus kraft pulp under surface culture at 39°C.

23 Study of handsheet properties of eucalyptus kraft pulp without and with PFI refining to 400 ml freeness following growth with *P. chrysosporium* K-3 using different glucose concentrations under surface culture at 39°C.

24 Effect of initial kappa number of pulp on pulp characteristics after growth of *P. chrysosporium* K-3 on eucalyptus kraft pulp under surface culture at 39°C.

25 Study of handsheet properties of eucalyptus kraft pulp without and with PFI refining to 400 ml freeness following growth of *P. chrysosporium* K-3 using pulps of different initial kappa numbers under surface culture at 39°C.
26 Effect of prerefining of pulps to different freeness levels on pulp characteristics of eucalyptus pulp after growth of *P. chrysosporium* K-3 under surface culture at 39°C.

27 Study of handsheet properties of eucalyptus kraft pulp without and with PFI refining to 400 ml freeness following growth with *P.chrysosporium* K-3 using pulps of different initial freeness levels obtained by prerefining under surface culture at 39°C.

28 Characteristics of biobleached and chlorine bleached eucalyptus kraft pulps following alkaline extraction with sodium hydroxide.

29 Handsheet properties of biobleached and chlorine bleached eucalyptus pulps without and with PFI refining to 400 ml freeness following alkaline extraction with sodium hydroxide.

30 Characteristics of biobleached and chlorine bleached eucalyptus kraft pulps after single stage chemical bleaching by calcium hypochlorite, chlorine dioxide and hydrogen peroxide.

31 Handsheet properties of biobleached and chlorine bleached eucalyptus pulp without and with PFI refining to 400 ml freeness following single stage chemical bleaching by calcium hypochlorite, chlorine dioxide and hydrogen peroxide.

32 Characteristics of biobleached and chlorine bleached eucalyptus kraft pulps after multistage chemical bleaching in two sequences of HH (Hypochlorite, Hypochlorite) and DED (chlorine dioxide, alkali extraction, chlorine dioxide).

33 Handsheet properties of biobleached and chlorine bleached eucalyptus kraft pulps without and with refining to 400 ml freeness following multistage bleaching in two sequences of HH (Hypochlorite, Hypochlorite) and DED (chlorine dioxide, alkali extraction, chlorine dioxide).

34 Handsheet properties of eucalyptus kraft pulp after BEP (biobleaching, alkali extraction and hydrogen peroxide treatment) bleaching under optimised biobleaching process and chemical sequence without and with refining.
35 Changes in O.D. $\frac{280}{260}$ and λ_{max} of the UV scan (200-320 nm) of supernatants obtained after alkaline extraction of ligninase treated pulps for different time intervals.

36 pH changes during biocolour removal of AES effluent by four standard strains and isolate VJ. under stationary conditions.

37 pH changes during biocolour removal of AES effluent by *P. chrysosporium* K-3 using different concentrations of glucose under stationary conditions.

38 Residual reducing sugars during biocolour removal of AES effluent under different carbon sources (1%) by *P. chrysosporium* K-3 under stationary conditions at 39°C.

39 pH changes during biocolour removal of AES effluent by *P. chrysosporium* K-3 using cellulose powder, pith and primary sludge under stationary conditions.

40 Effect of initial colour concentrations of AES effluent on its pH during biocolour removal by *P. chrysosporium* K-3 under stationary conditions.

41 Effect of incubation temperature on pH during biocolour removal of AES effluent by *P. chrysosporium* K-3 under stationary conditions.

42 Effect of flask capacity to effluent volume (in same ratio) on pH during biocolour removal of AES effluent (3000 Pt/Co units) by *P. chrysosporium* K-3 under stationary conditions.

43 Changes in colour, reducing sugars and pH of AES effluent during its biocolour removal by *P. chrysosporium* K-3 in a stirred LKB fermenter.