Outline of the scheme of studies

Chapter I - Introduction

i. The problem 1-7

ii. Resume of existing literature on the subject as a guide to the evaluation of the current status of the problem 8-28

iii. Specific objectives to be achieved 29

Chapter II- Experimental design of the study and its execution (30-196)

i. Studies on the fortificant 30-91

ii. Studies on the fortified milk
 In vitro studies 92-169
 In vivo studies 170-186

iii. Studies on other foods and feeds 187-196

Chapter III - Discussion (197-253)

i. The problem 199-211

ii. The execution of the plan 212-248

iii. The conclusions drawn from the present study 248-250

iv. The suggestions for future work in this area 250-253

Chapter IV - Summary (254-261)

Chapter V - Bibliography (i-XLii)

Plates (Figures and Photographs) (I-XXII)

1. List of Tables 1-69

2. List of Plates I-XXII (containing Figures 1-78)

3. List of Abbreviations
Details of the scheme of studies

Chapter I

INTRODUCTION

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. The problem</td>
<td>...</td>
<td>(1-29)</td>
</tr>
<tr>
<td>(a) Genesis, rationale and the scope of the proposed project</td>
<td>...</td>
<td>1-7</td>
</tr>
<tr>
<td>(b) Aims of the present study</td>
<td>...</td>
<td>3-5</td>
</tr>
<tr>
<td>1. Preventive fortification of infant foods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Milk as carrier food for fortification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) Isolation of the central problem to be tackled in the proposed investigation</td>
<td>...</td>
<td>5-7</td>
</tr>
<tr>
<td>1. Peculiarities inherent in carrying through ironization of milk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Attributes of an ideal milk fortificant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. Resume of existing literature on the subject as a guide to the evaluation of the current status of the problem</td>
<td>...</td>
<td>8-28</td>
</tr>
<tr>
<td>(a) Review of literature</td>
<td>...</td>
<td>8-26</td>
</tr>
<tr>
<td>1. Fortification of milk and milk products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Fortification of other foods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Fortification of wheat flour, bread and rice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Fortification of salt, sugar and coffee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Fortification of drinks, beverages and sauces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Lacunae in our current knowledge about the problem</td>
<td>...</td>
<td>27-28</td>
</tr>
<tr>
<td>iii. Specific objectives to be achieved</td>
<td>...</td>
<td>29</td>
</tr>
</tbody>
</table>

Chapter II

EXPERIMENTAL DESIGN OF THE STUDY AND ITS EXECUTION

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(30-196)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Studies on the fortificant</td>
<td>...</td>
<td>30-91</td>
</tr>
<tr>
<td>(a) Designing the fortificant</td>
<td>...</td>
<td>30-36</td>
</tr>
<tr>
<td>1. Basis and rationale of selecting a ligand suitable for complexing iron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Use of a fortificant system rather than a fortificant molecule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Selection of the co-fortificant</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(b) Preparation of iron complexes as potential fortificants

1. Ligands investigated for complexing iron

2. Preparation of the complexes
 2.1 Iron-sugar complexes
 2.2 Iron complexes with weak ionic ligands

(c) Screening of the prepared complexes for finding their suitability as milk fortificant

(d) Physico-chemical characteristics of the selected fortificant systems

1. Solubility, the pH and the dissociation characteristics of the complexes
2. Behaviour of the complexes on sedimentation and dialysis
3. Behaviour of the complexes on TLC, molecular sieving and electrophoresis
4. UV and visible absorption studies on the complexes

(e) Probable structure of the ferric sorbitol and mannitol complexes

1. Gross composition of the complexes by chemical analysis
2. Probable nature of the complexes by physico-chemical techniques
3. Probable structure of the complexes

(f) Selection of FS in preference to FM

ii. Studies on fortified milk

In vitro studies

(a) Methodology adopted for the fortification programme

(b) Distribution pattern of 59Fe when added as ferric sorbitol + ascorbic acid (FS + AA) system to buffalo and cow milks

(c) Effect of the FS + AA system on the characteristics of buffalo and cow milks

1. Effect of FS + AA system on the miscibility, stability, colour and taste of buffalo and cow milks

2. Effect of FS + AA system on the flavour of buffalo and cow milks
2.1 Sensory evaluation of the off-flavours in milks...
2.2 Chemical evaluation of the off-flavours in milks...
 2.2.1 Effect on the acidity of milks
 2.2.1.1 Effect on the lipase flavour
 2.2.1.2 Effect on the total titrable acidity
 2.2.1.3 Effect on the pH
 2.2.2 Effect on the reducing power of milks
 2.2.2.1 Effect on the TTC value
 2.2.2.2 Effect on the DP value
 2.2.3 Effect on the oxidized flavour of milks (The extent of lipid peroxidation as measured by the TBA values of milks)
 2.2.3.1 Effect on the extent of autoxidation in whole milk
 2.2.3.2 Effect on the extent of autoxidation in the skim milk and the cream
 2.2.3.3 Effect on the extent of autoxidation in the isolated fat globule membranes (FGMs)
 2.2.3.3.1 Effect on the FGM proteins and phospholipids
 2.2.3.3.2 Effect on the FGM bound enzymes
 3. Effect of FS + AA system on the characteristics of buffalo and cow milk: proteins
 3.1 Effect on the amount of total protein of whole milks, and on the relative distribution of skim milk proteins
 3.2 Effect on the acid- and the rennin-induced curdling behaviour of milks
 3.3 Effect on the electrophoretic pattern of milk proteins
 3.4 Effect on the activities of whole milk enzymes

(d) Effect of the milk constituents on the characteristics of the fortificant system 158-169
 1. Effect on the state of oxidation of added iron (FS)
 2. Effect on the added sorbitol (FS)
 3. Effect on the state of oxidation of added ascorbic acid
In vivo studies 170-186
(a) Bioavailability of iron from fortified milk 170-180

1. Nutritional availability of iron from
FS + AA system-fortified buffalo milk
 1.1 Tissue distribution of labelled iron (FS)
 1.2 Haematological response
 1.3 Hepatic and splenic distribution of
 heme and nonheme ferro-protein iron

(b) Assessment of any adverse tissue response as a
consequence of iron uptake from FS + AA system-
fortified buffalo milk ... 180-186

 1. Effect on the rate of body and organ growth
 2. Assessment of any hepatic damage
 2.1 Status of the hepatic redox state
 (Assessment of any oxidative
damage to liver)
 2.1.1 Status of thiol redox state
 2.1.2 Status of reduced ascorbic acid
 2.1.3 Status of xanthine oxidase
 2.1.4 Assessment of lipid peroxidation
 (TBA values of hepatic tissue)
 2.2 Status of the hepatic aminotransferases and
 phosphohydrolases
 3. Assessment of any oxidative damage to the
 status of the redox state in the blood
 3.1 Status of thiol redox state
 3.2 Status of reduced ascorbic acid
 3.3 Status of xanthine oxidase
 3.4 Assessment of lipid peroxidation
 (Blood TBA values)

iii. Studies on other foods and feeds ... 187-196

Chapter III

DISCUSSION (197-253)

i. The problem 199-211
 (a) The genesis of the present study
 (b) The vehicle

ii. The execution of the plan ... 212-248
 (a) The fortificant
 (b) The fortified milk
 In vitro studies
 In vivo studies
(c) Possible fortification of other foods and feeds

iii. The conclusions drawn from the present study 248-250
iv. The suggestions for future work in this area 250-253

Chapter IV

SUMMARY (254-261)

Chapter V

BIBLIOGRAPHY (i-xLii)

PLATES (Figures and Photographs) (I-XXII)

1. List of Tables 1-69
2. List of Plates I-XXII (containing Figures 1-78)
3. List of Abbreviations.