List of Figures

1. Elution profile of MBSA-DNM from the Sephadex G-50 column ... 37
2. Anodic mobility in agarose gel electrophoresis at pH 8.4 as detected by Coomassie blue staining. A. BSA; B. MBSA; C. MBSA-DNM ... 38
3. Absorbance spectrum of DNM between 200–600 nm. in Du–7 spectrophotometer 40
4. Absorbance spectrum of MBSA between 200–600 nm. in Du–7 spectrophotometer................................. 41
5. Absorbance spectrum of MBSA-DNM between 200–600 nm. in Du–7 spectrophotometer ... 42
6. Binding of different concentrations of 125I-MBSA-DNM by J774A.1 cells at 4°C 43
7. Effect of MBSA and DNM on 125I-MBSA-DNM binding by J774A.1 cells at 4°C 44
8. Relationship between the concentration of 125I-MBSA-DNM and the extent of uptake (panel a) or degradation (panel b) of MBSA-DNM by J774A.1 cells ... 46
9. Effect of monensin (3 μM) on the rate of accumulation and degradation of 125I-MBSA-DNM ... 47
10. Accumulation and degradation of 125I-MBSA-DNM at 37°C previously bound to J774A.1 tumor cells at 4°C ... 48
11. Effect of different concentrations of MBSA-DNM or MBSA on the degradation of 125I-MBSA-DNM by J774A.1 cells at 37°C ... 50
LIST OF FIGURES

12 Degradation of 125I-MBSA-DNM by cell lines of macrophage and non-macrophage origin. .. 51

13 3H-thymidine incorporation by J774A.1 cells at varying periods of time after drug exposure. .. 53

14 Ability of MBSA-DNM treated tumor cells to form monolayer in culture. 55

15 Incorporation of 3H-thymidine by J774A.1 and Bowes melanoma cells in presence of DNM in free (panel a) or conjugated form (panel b). 57

16 Survival of BALB/C mice after transplantation of J774A.1 tumor cells. 58

17 Development of tumor in BALB/C mice after transplantation of drug treated cells.a. untreated; b. control; c. DNM; d. MBSA-DNM. . . 59

18 Binding of 125I-MBSA-DNM by J774A.1 and JD-100 cells at 4°C. . . 62

19 Degradation of 125I-MBSA-DNM by J774A.1 and JD-100 cells at 37°C. 63

20 Accumulation and degradation of 125I-MBSA-DNM at 37°C previously bound to JD-100 cells at 4°C. 65

21 Effect of different concentrations of MBSA-DNM and DNM on the 3H-thymidine incorporation by JD-100 cells at 37°C. 66

22 Time course of cytotoxic action of DNM in free or conjugated form on JD-100 cells. ... 67

23 Time course of clearance of intravenously injected 125I-MBSA-DNM from the blood of BALB/C mice. 69

24 Tissue distribution of intravenously injected 125I-MBSA-DNM in BALB/C mice. ... 70

25 Suppression of tumor growth in BALB/C mice by different doses of DNM and MBSA-DNM. ... 71

26 Suppression of the tumor growth in BALB/C mice by different doses of DNM and MBSA-DNM. ... 72

27 Effect of MBSA-DNM and DNM on the growth of J774A.1 tumors in BALB/C mice. ... 74

28 Treatment of J774A.1 tumors in BALB/C mice with single administration (50 µg) of DNM in free and conjugated form. 75
LIST OF FIGURES

29 Effect of MBSA-DNM and DNM on the suppression of preformed tumors in BALB/C mice. 76