TABLE OF CONTENTS

ACKNOWLEDGEMENT

SUMMARY

ABBREVIATIONS

CHAPTER 1 Review

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Hemicellulose</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Xylan</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1 Backbone of xylan</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2 Nature of xylan side chains</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Enzymatic hydrolysis of xylan</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1 Components of xylanolytic system</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1.1 Endoxylanase</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1.2 β-D xylosidase</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1.3 α-L-arabinofuranosidase</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1.4 α-4-O-methyl-D-glucuronidase</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1.5 Acetylxylan esterase</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2 Assay of enzyme activities</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2.1 Endoxylanase</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2.2 β-D xylosidase</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2.3 α-L-arabinofuranosidase</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2.4 α-D-glucuronidase</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2.5 Acetylxylan esterase</td>
<td>10</td>
</tr>
<tr>
<td>1.3.3 Occurrence of xylanases</td>
<td>11</td>
</tr>
<tr>
<td>1.3.3.1 Multiplicity of xylanases</td>
<td>11</td>
</tr>
<tr>
<td>1.3.3.2 Biochemical properties of xylanases</td>
<td>12</td>
</tr>
<tr>
<td>1.3.4 Regulation of enzyme synthesis</td>
<td>13</td>
</tr>
<tr>
<td>1.3.5 Molecular biology of xylanases</td>
<td>15</td>
</tr>
<tr>
<td>1.3.6 Application of xylanolytic enzymes</td>
<td>15</td>
</tr>
<tr>
<td>1.4 Use of Biobleaching in pulp and paper industry</td>
<td>16</td>
</tr>
<tr>
<td>1.4.1 Bleaching by xylanases</td>
<td>18</td>
</tr>
<tr>
<td>1.4.2 Importance of thermostable alkaline cellulase</td>
<td>18</td>
</tr>
<tr>
<td>free xylanases in pulp industry</td>
<td>18</td>
</tr>
<tr>
<td>1.5 Xylanases from alkalophiles</td>
<td>19</td>
</tr>
<tr>
<td>1.5.1 Alkalophilic microorganisms</td>
<td>20</td>
</tr>
<tr>
<td>1.5.2 Physiochemical properties of xylanase of alkalophilic microorganisms</td>
<td>20</td>
</tr>
<tr>
<td>1.5.3 Molecular cloning, expression and nucleotide sequence of xylanases from alkalophilic microorganisms</td>
<td>20</td>
</tr>
<tr>
<td>1.6 Thermostable alkaline xylanases from microorganisms other than alkalophiles</td>
<td>24</td>
</tr>
</tbody>
</table>

SCOPE OF THE PRESENT STUDY 25
CHAPTER 2 Materials and methods

2.1 Materials

2.1.1 Bacterial strains
2.1.2 Plasmids
2.1.3 Growth media
2.1.4 Buffers and solutions
2.1.5 Antibiotics
2.1.6 Chemicals

2.2 Methods

2.2.1 Electron microscopy
2.2.2 DNA melting temperature
2.2.3 Biochemical characterisation, fatty acid composition and 16S rDNA sequencing
2.2.4 Preparation of xylanase
2.2.5 Induction of xylanase
2.2.6 Catabolite repression
2.2.7 Xylan substrate preparation
2.2.8 Xylanase assay
2.2.9 Protein estimation
2.2.10 Polyacrylamide gel electrophoresis of protein
2.2.11 Zymography
2.2.12 Mini preparation of plasmid DNA
2.2.13 Large scale preparation of plasmid DNA
2.2.14 Large scale preparation of the genomic DNA
2.2.15 Purification of DNA through CsCl density gradient
2.2.16 Cloning of xylanase gene of Bacillus sp. NG-27
2.2.17 Transformation of E. coli by TSS method
2.2.18 Restriction enzyme digestion of DNA and agarose gel electrophoresis
2.2.19 Southern blot analysis
2.2.20 Electroleulution of the probe
2.2.21 32P labeling of probes by nick translation
2.2.22 Hybridisation
2.2.23 Labeling of plasmid-coded proteins in maxicells
2.2.24 Fluorography
2.2.25 DNA sequencing
2.2.26 Analysis of the sequence
2.2.27 Electrottransformation of Bacillus
2.2.28 Optimisation of temperature for xylanase production
2.2.29 Optimisation of hydrogen ion concentration for xylanase production
2.2.30 Biochemical characterisation of xylanase
2.2.30.1 Substrate concentration
2.2.30.2 Hydrogen ion concentration
2.2.30.3 Temperature
2.2.31 Paper chromatography of xylan hydrolysis
CHAPTER 3 Characterisation of aikaiophilic isolate NG-27 and its xylanolytic system

RESULTS

3.1 Identification of the isolate NG-27
3.1.1 Morphology of the isolate NG-27
3.1.2 Biochemical characteristics of the isolate NG-27
3.1.3 Fatty acid composition of the isolate NG-27
3.1.4 DNA base composition of the isolate NG-27
3.1.5 16S rDNA sequencing of aikaiophilic Bacillus sp. NG-27

3.2 Xylanolytic system of aikaiophilic Bacillus sp. NG-27
3.2.1 Induction of xylanolytic system
3.2.2 Catabolite repression of xylanolytic system
3.2.3 Multiple xylanases from Bacillus sp. NG-27

DISCUSSION

CHAPTER 4 Cloning of the aikaiophilic Bacillus sp. NG-27 alkaline thermostable xylanase gene in Escherichia coli

RESULTS

4.1 Construction of genomic DNA library of Bacillus sp. NG-27
4.2 Screening of the library
4.3 Confirmation of the clones
4.4 Determination of the size of the insert
4.5 Maxicell analysis of protein coded by hybrid plasmid pGNG17
4.6 Zymographic analysis of pGNG17 gene products
4.7 Characterisation of xylanase coded by pGNG17
4.7.1 Optimum temperature
4.7.2 Optimum pH
4.8 Restriction mapping of pGNG17
4.9 Subcloning
4.10 Production, cellular distribution and induction of xylanase by E. coli carrying recombinant plasmids
4.11 Southern hybridisation analysis

DISCUSSION

CHAPTER 5 Nucleotide sequence analysis of the gene coding for alkaline thermostable xylanase

5.1 Sequencing
5.2 Open reading frame(s)
5.3 Analysis of the upstream region
5.3.1 Ribosome binding site
5.3.2 Promoters
5.3.3 Catabolite repression site

5.4 Analysis of the deduced amino acid sequence
5.4.1 Amino acid composition
5.4.2 Codon usage
5.4.3 Signal peptide
5.4.4 Active site

5.5 Comparison of the deduced amino acid sequence
5.6 Characterisation of thermostable domain

DISCUSSION

CHAPTER 6 Cloning and expression of
alkalostable thermostable xylanase
gene from Bacillus sp. NG-27 in Bacillus
subtilis A8

RESULTS

6.1 Cloning of xylanase gene in Bacillus subtilis
6.1.1 Host strain
6.1.2 Vector
6.1.3 Cloning of 43 kb Hind III fragment from pGNG17
in Bacillus subtilis A8
6.1.4 Cloning of 2.6 kb Hind III-Hpa I fragment from
pGNG17 in Bacillus subtilis A8
6.1.5 Segregational stability of pGNG24 and pGNG25
6.1.6 Structural stability of pGNG24 and pGNG25

6.2 Zymographic analysis of B. subtilis A8/pGNG24 products

6.3 Optimisation of xylanase production from the recombinant Bacillus

6.3.1 Time course of cell growth and xylanase production
from the recombinant Bacillus in shake flask
6.3.2 Optimum temperature for xylanase production
6.3.3 Optimum pH for xylanase production
6.3.4 Induction of xylanase in B. subtilis A8/pGNG24

6.4 Comparison of the characteristics of recombinant and
native xylanases
6.4.1 Optimum temperature
6.4.2 Optimum hydrogen ion concentration
6.4.3 Substrate concentration
6.4.4 Effect of chemical modifiers
6.4.5 Effect of reducing and oxidising agents
6.4.6 Effect of surfactants
6.4.7 Effect of chelating agents
6.4.8 Effect of metal ions
6.4.9 Hydrolysis of xylan and determination of end-products

DISCUSSION

Bibliography