Fig. 2.1 Core radial wavefunction densities for restricted and unrestricted Hartree Fock

Fig. 2.2 Core polarization for 2s and 4s

Fig. 2.3 The internal hyperfine magnetic at solute nuclei in an iron host plotted vs the atomic number \(z \) of the solute.

Fig. 2.4 The internal hyperfine magnetic fields at solute nuclei in a cobalt host plotted vs the atomic number \(z \) of the solute.

Fig. 2.5 The internal hyperfine magnetic fields at solute nuclei in a nickel host plotted vs the atomic number \(z \) of the solute.

Fig. 2.6 Calculated polarization \(P \) for s electrons as a function of the valence \(Z \) of the impurity atoms. For iron \(P_h=1 \). Curve 'a' is the Daniel and Friedal estimate and curve 'b' is Campbell's estimate.

Fig. 2.7 Calculated polarization at the site of an s-p impurity as a function of the number \(Z \) of s-p electrons. \(P_h \) is the polarization at the host gadolinium site.
CHAPTER III

Fig. 3.1 Typical gamma-gamma cascade of two radiations

Fig. 3.2 The precession of the nuclear angular momentum I and the nuclear dipole moment μ around the magnetic field H.

CHAPTER IV

Fig. 4.1 Circuit diagram of the photo-multiplier and the cathode follower.

Fig. 4.2 Circuit diagram of the fast amplifier unit.

Fig. 4.3 Circuit diagram of the fast coincidence unit.

Fig. 4.4 Circuit diagram of the univibrator and inverter unit.

Fig. 4.5 Circuit diagram of a slow triple coincidence unit.

Fig. 4.6 Block diagram of a slow fast coincidence set up.

Fig. 4.7 Details of the arrangement for performing experiments at liquid nitrogen temperature.

Fig. 4.8 Planer view of the chamber.

Fig. 4.9 Design of the ends A and B of the brass jacket.

Fig. 4.10 Photograph of the actual set up.

CHAPTER V

Fig. 5.1 Partial decay scheme of Se75

Fig. 5.2 Singles gamma spectrum of Se75.
Fig. 5.3 Angular displacement of the directional correlation of 121.1 - 279.6 keV cascade of 75As in a transverse magnetic field.

Fig. 5.4 The variation of the internal hyperfine fields on arsenic in iron, cobalt and nickel with the host magnetic moment.

Fig. 5.5 Hyperfine fields for solute atoms in Fe and Ni hosts vs. atomic number.

Fig. 5.6 Decay scheme of Lu177.

Fig. 5.7 Singles gamma spectrum of Lu177.

Fig. 5.8 Directional correlation of the 208-113 keV cascade in Hf177.

Fig. 5.9 Partial decay scheme of Ir192.

Fig. 5.10 Singles gamma spectrum of Ir192.

Fig. 5.11 Directional correlation of the 468-317 keV cascade in Pt192.

Fig. 6.1 Partial decay scheme of Ag110m.

Fig. 6.2 Singles gamma spectrum of Ag110m.

Fig. 6.3 Partial decay scheme of Tb160.

Fig. 6.4 Singles gamma spectrum of Tb160.

CHAPTER VI

Fig. 6.1 Partial decay scheme of Ag110m.

Fig. 6.2 Singles gamma spectrum of Ag110m.

Fig. 6.3 Partial decay scheme of Tb160.

Fig. 6.4 Singles gamma spectrum of Tb160.