CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>i</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>v</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. REVIEW OF LITERATURE</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Classification of Epileptic seizure</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Epidemiology of epilepsy</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Etiology of epilepsy</td>
<td>10</td>
</tr>
<tr>
<td>2.4 Neuropathology of epilepsy</td>
<td>11</td>
</tr>
<tr>
<td>2.5 Neurochemical mechanism involved in epilepsy</td>
<td>12</td>
</tr>
<tr>
<td>2.6 Diagnosis of epilepsy</td>
<td>13</td>
</tr>
<tr>
<td>2.7 Experimental models of epilepsy</td>
<td>14</td>
</tr>
<tr>
<td>2.7.1 In vitro model: Organotypic hippocampal slice cultures</td>
<td>15</td>
</tr>
<tr>
<td>2.7.2 Genetic model of epilepsy</td>
<td>15</td>
</tr>
<tr>
<td>2.7.3 Status epilepticus (SE) by Pilocarpine</td>
<td>16</td>
</tr>
<tr>
<td>2.7.4 Kainic model of epilepsy</td>
<td>16</td>
</tr>
<tr>
<td>2.8 Kindled model of epilepsy</td>
<td>18</td>
</tr>
<tr>
<td>2.8.1 Historical perspective of kindling model</td>
<td>18</td>
</tr>
<tr>
<td>2.8.2 PTZ induced kindling model of epilepsy</td>
<td>19</td>
</tr>
<tr>
<td>2.8.3 Mechanism of PTZ kindling</td>
<td>19</td>
</tr>
<tr>
<td>2.9 Role of brain Inflammation in epilepsy</td>
<td>21</td>
</tr>
<tr>
<td>2.9.1 Role of glial cell in epilepsy</td>
<td>22</td>
</tr>
<tr>
<td>2.10 Blood brain barrier (BBB) and Epilepsy</td>
<td>25</td>
</tr>
<tr>
<td>2.11 Cytokine activation in inflammatory cascade and epilepsy</td>
<td>28</td>
</tr>
<tr>
<td>2.11.1 Cytokines and blood brain barrier (BBB)</td>
<td>30</td>
</tr>
<tr>
<td>2.11.2 Cytokines in epilepsy</td>
<td>31</td>
</tr>
<tr>
<td>2.12 Cell loss in epilepsy</td>
<td>34</td>
</tr>
<tr>
<td>2.13 Role of oxidative stress in epilepsy</td>
<td>35</td>
</tr>
<tr>
<td>2.14 Role of Mitochondria in Epilepsy</td>
<td>37</td>
</tr>
<tr>
<td>2.15 Transcription factors involved in inflammation</td>
<td>40</td>
</tr>
<tr>
<td>2.16 Cognitive functions in epilepsy</td>
<td>41</td>
</tr>
<tr>
<td>2.17 Current Therapies in Epilepsy</td>
<td>42</td>
</tr>
</tbody>
</table>
2.17.1 Antiepileptic Drugs
2.17.2 Surgery
2.17.3 Dietary changes (Natural products)
2.17.4 Anti-oxidants in epilepsy

3. MATERIALS AND METHODS
3.1 Chemicals
3.2 Animals
3.3 Drug and treatment schedule
3.3.1 Kindling Procedure
3.4 Neurobehavioral Studies
3.4.1 Rotarod
3.4.2 Elevated plus maze (EPM) for spatial learning and memory
3.4.3 Elevated plus maze for anxiety
3.4.4 Actophotometer
3.4.5 Active avoidance
3.4.6 Passive avoidance
3.4.7 Morris water maze
3.4.8 Y-maze
3.5 Necroscopy and Tissue homogenization
3.6 Biochemical Estimations
3.6.1 Lipid peroxidation
3.6.2 Superoxide dismutase (SOD EC 1.15.1.1)
3.6.3 Catalase (CAT, EC 1.11.1.6)
3.6.4 Glutathione-S-transferase (GST EC 2.5.1.13)
3.6.5 Total Thiols
3.6.6 Glutathione (Non-protein thiols)
3.6.7 Protein Thiols (P-SH)
3.6.8 Acetylcholinesterase activity (AChE 3.1.1.7)
3.7 Mitochondrial Studies
3.7.1 Isolation of Mitochondria and activity of mitochondrial complexes
3.7.2 NADH dehydrogenase (EC 1.6.99.3)
3.7.3 Succinate dehydrogenase (EC 1.3.5.1)
3.7.4 Cytochrome-c oxidase (EC 1.9.3.1)
3.7.5 F1 F0 ATP synthase (EC 3.6.3.14)
3.7.6 MTT Reduction
3.7.7 Mitochondrial swelling
3.7.8 Mitochondrial reactive oxygen species (ROS) generation 69
3.7.9 Protein carbonyls 70
3.7.10 Protein Estimation 71
3.8 Neuroinflammation Studies 72
3.8.1 RNA extraction 72
3.8.2 cDNA preparation 73
3.8.3 Real time PCR reaction 73
3.8.4 Cycling conditions 73
3.8.5 Probe (Oligonucleotide primers) 74
3.8.6 Western Blot analysis 75
3.8.7 Quantification of cytokines and chemokines using ELISA 75
3.8.8 Immunohistochemistry 76
3.9 Blood Brain Barrier studies 77
3.9.1 Sodium fluorescein (NaFl) extravasation 77
3.9.2 Evans Blue (EB) extravasation 77
3.9.3 Measurement of brain water content 78
3.9.4 Gelatin Zymography for MMP-9 and MMP-2 78
3.9.5 Real time PCR (MMP-9 and MMP-2) 79
3.10 Electrophoretic mobility shift assay (EMSA) 79
3.11 Assessment of neuronal injury 80
3.11.1 FluorojadeB 80
3.11.2 Terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) Assay 80
3.12 Histopathological Studies 81
3.12.1 Haemotoxylin and Eosin staining 81
3.12.2 Cresyl violet Staining 82
3.12.3 Transmission electron microscopy 82
3.13 Statistical analysis 82
4. RESULTS AND DISCUSSION 83
4.1 Experimental model of chronic epilepsy induced by PTZ 83
4.2 Effect of curcumin supplementation on seizure score in PTZ induced model of epilepsy 83
4.3 Effect of curcumin supplementation on body weight of PTZ treated animals. 84
4.4 Effect of curcumin supplementation on PTZ induced neurobehavioral deficits 86
4.4.1 Rotarod 87
4.4.2 Actophotometer 88
4.4.3 Elevated plus maze (EPM) for spatial learning and memory
4.4.4 Elevated plus maze for anxiety
4.4.5 Active avoidance task
4.4.6 Passive avoidance task
4.4.7 Morris water maze (MWM)
4.4.8 Y-Maze

4.5 Effect of curcumin supplementation on acetylcholinesterase activity in PTZ treated animals

4.6 Effect of curcumin supplementation on PTZ induced oxidative stress
4.6.1 Lipid peroxidation (LPO)
4.6.2 Antioxidant defense system
4.6.3 Thiol redox state

4.7 Effect of curcumin supplementation on PTZ induced mitochondrial respiratory chain dysfunctions
4.7.1 NADH dehydrogenase (EC 1.6.99.3)
4.7.2 Succinate dehydrogenase (EC 1.3.5.1)
4.7.3 Cytochrome oxidase (EC 1.9.3.1)
4.7.4 F_1F_0 synthase (EC 3.6.3.14)
4.7.5 MTT reduction

4.8 Effect of curcumin supplementation on PTZ induced mitochondrial membrane permeability (Mitochondrial Swelling)

4.9 Effect of curcumin supplementation on PTZ induced mitochondrial oxidative stress
4.9.1 Reactive Oxygen Species
4.9.2 Protein carbonyls

4.10 Effect of curcumin supplementation on PTZ induced ultrastructural changes in mitochondria

4.11 Effect of curcumin supplementation on astrocytes and microglial activation
4.11.1 Immunoblotting and real-time-PCR analysis of astrocytes marker (GFAP)
4.11.2 Effect of curcumin supplementation on immunohistochemical staining for astrocytes (GFAP)
4.11.3 Immunoblotting and real-time-PCR analysis of microglial marker (Iba-1)
4.11.4 Effect of curcumin supplementation on immunohistochemical staining for microglial (Iba-1)

4.12 Effect of curcumin supplementation on PTZ induced cytokines and chemokine activation
4.12.1 mRNA expression of pro-inflammatory cytokines and chemokine
4.12.2 Protein levels of pro-inflammatory cytokines and chemokine
4.13 Effect of curcumin supplementation on transcription factor NF-kB in PTZ treated animals 149
4.14 Effect of curcumin supplementation on blood brain barrier (BBB) permeability 150
 4.14.1 Sodium fluorescein 151
 4.14.2 Evans blue 152
 4.14.3 Brain edema 153
 4.14.4 Effect of curcumin supplementation on blood vessel changes in PTZ treated animals 155
4.15 Effect of curcumin supplementation on expression of MMP-9 and MMP-2 in PTZ treated animals 157
 4.15.1 MMP-9 activity and mRNA expression in PTZ treated animals 157
 4.15.2 MMP-2 activity and mRNA expression in PTZ treated animals 159
4.16 Effect of curcumin supplementation on PTZ induced histopathological changes 160
 4.16.1 Cresyl violet staining 161
 4.16.2 H & E staining 164
 4.16.3 Fluoro-Jade B staining 166
 4.16.4 TUNEL staining 167
5. SUMMARY AND CONCLUSIONS 173
REFERENCES 179