CONTENTS

CHAPTER I
GENERAL REVIEW

1.1. INTRODUCTION 1

1.2. CRYSTALLOGRAPHIC STRUCTURE OF CARBON 2

1.2.1. Structure of Diamond 3

1.2.2. Structure of Ideal Graphite 3

1.2.3. Electrical and Thermal Properties of Graphite Single Crystals 5

1.3. MANUFACTURE OF CONVENTIONAL CARBONS 6

1.3.1. Terminology in Carbon and Graphite Industry 7

1.3.2. Physical Structure of Carbon Products 8

1.3.3. Electrical and Thermal Properties of Carbon Products 8

1.4. ORIGIN OF GLASS-LIKE CARBON 9

1.5. PREPARATION METHODS OF GLASS-LIKE CARBON 12

1.5.1. Cellulose Carbon by General Electric (U.K.) 12

1.5.2. Glass-like Carbon by Tokai Electrode (Japan) 12

1.5.3. Vitreous Carbon by Plassey Co. (U.K.) 13

1.5.4. Vitro Carbon by Resource Research Institute (Japan) 13

1.5.5. Glass-like Carbon made from other Resins 13

1.6. STRUCTURE OF GLASS-LIKE CARBON 14

1.7. PROPERTIES OF GLASS-LIKE CARBONS 17

1.8. APPLICATIONS OF GLASS-LIKE CARBON 19

1.8.1. Analytical 19

1.8.2. Electrical and Electronics 20
1.8.3. Metallurgical 20
1.8.4. Mechanical 20
1.8.5. Biomedical 21
1.9. SCOPE OF THE PRESENT INVESTIGATIONS 21
REFERENCES 25

CHAPTER II
EXPERIMENTAL TECHNIQUES

2.1. INTRODUCTION 30
2.2. PREPARATION OF GLASS-LIKE CARBON 30
2.3. PREPARATION OF RESINS (SIMPLE PHENOL FORMALDEHYDE, CATECHOL FORMALDEHYDE AND RESORCINOL FORMALDEHYDE RESINS 31
2.4. FORMING OF GREEN CARBON 34
 2.4.1. Casting Method 34
 2.4.2. Moulding Method 35
2.5. CURING AND CHARACTERIZATION OF GREEN CARBON 35
2.6. CARBONIZATION OF GREEN CARBON 37
2.7. HEAT-TREATMENT UPTO 2600 °C 38
2.8. CHARACTERIZATION OF CARBONIZED GLASS-LIKE CARBONS 38
 2.8.1. Determination of Carbonization Yield 38
 2.8.2. Determination of Linear Shrinkage 39
 2.8.3. Determination of Volume Shrinkage 39
 2.8.4. Determination of Apparent Density 39
 2.8.5. Determination of Water Immersion Density 40
 2.8.6. Determination of Kerosene Density 40
 2.8.7. Determination of Open Porosity 41
2.8.8. Determination of Pore Volume and Pore Size Distribution
2.8.9. Determination of Electrical Resistivity
2.8.10. Determination of Transverse Breaking Strength
2.8.11. Determination of Young's Modulus
2.8.12. Determination of Shore Hardness
2.8.13. Determination of Carbon and Hydrogen Content (Pregl's Method)

CHAPTER III
PREPARATION AND CHARACTERIZATION OF GLASS-LIKE CARBON FROM PHENOL FORMALDEHYDE RESIN

3.1. INTRODUCTION
3.2. CARBONIZATION BEHAVIOUR OF PHENOL FORMALDEHYDE RESIN
 3.2.1. Carbonization Yield, Volume Shrinkage and Linear Shrinkage Versus HTT
 3.2.2. Bulk Density, Kerosene Density and Open Porosity Versus HTT
 3.2.3. Pore Volume and Pore Size Distribution Versus HTT
 3.2.4. Transverse Breaking Strength and Shore Hardness Versus HTT
 3.2.5. Electrical Resistivity Versus HTT
 3.2.6. Carbon, Hydrogen, C/H Atomic Ratio and Nitrogen Content Versus HTT

3.3. OPTIMIZATION OF FORMALDEHYDE TO PHENOL MOLAR RATIO IN THE PHENOL FORMALDEHYDE RESIN SUITABLE FOR GLASS-LIKE CARBON
 3.3.1. Resin Formation Yield Versus F/P Molar Ratio
5.2. GLASS-LIKE CARBON PLATES USING CASTING TECHNIQUE 102

5.3. GLASS-LIKE CARBON RODS MADE USING CASTING TECHNIQUE 106

5.4. GLASS-LIKE CARBON MADE FROM RESORCINOL FORMALDEHYDE RESIN 107
 5.4.1. Variation of Different Characteristics With F/R Molar Ratio 110
 5.4.2. Proposed Mechanism for F/R Molar Ratio Requirement of 1.5 in Resorcinol Formaldehyde Resin 114

5.5. GLASS-LIKE CARBON MADE FROM CATECHOL FORMALDEHYDE RESIN 115
 5.5.1. Variation of Different Characteristics With F/C Molar Ratio 117
 5.5.2. Proposed Mechanism for F/C Molar Ratio Requirement of 2.0 in Catechol Formaldehyde Resin 119

5.6. A COMPARISON OF CHARACTERISTICS OF GLASS-LIKE CARBONS FROM DIFFERENT PHENOLIC RESIN SYSTEMS 125

REFERENCES 129

CHAPTER VI
INVESTIGATIONS ON APPLICATIONS OF GLASS-LIKE CARBON

6.1. INTRODUCTION 131

6.2. DEVELOPMENT OF GLASS-LIKE CARBON DENTAL IMPLANTS 132
 6.2.1. Design and Development of Dental Implants 133
 6.2.2. Field Trials of Dental Implants on Animals and Human-beings 134
 6.2.3. Field Trial Results of Dental Implants 143
6.3. GLASS-LIKE CARBON ARTEFACTS FOR ANALYTICAL APPLICATIONS

6.3.1. Glass-Like Carbon Crucibles for Silicon Processing

6.3.2. Glass-Like Carbon Resistor Plates and Crucibles for Thin Film Applications

6.3.3. Glass-Like Carbon Artefacts for Other Applications

REFERENCES

CHAPTER VII

SUMMARY OF RESULTS