CHAPTER 1
CHAPTER - I
A UNIQUENESS PROBLEM IN VALUED FUNCTION FIELDS OF CONICS

§1. INTRODUCTION

Throughout this chapter v_0 is a (Krull) valuation of a field K_0 with value group G_0 and residue field k_0. Let K/K_0 be a finitely generated field extension of transcendence degree one and let v be a valuation of K extending v_0 with value group G such that G/G_0 is not a torsion group. By an element with the uniqueness property for $(K,v)/(K_0,v_0)$ (or more precisely for v/v_0), we mean an element t of K which satisfies (i) $v(t)$ is non-torsion modulo G_0; (ii) the valuation of $K_0(t)$ obtained by restricting v has a unique extension (upto equivalence) to K.

In 1993, Khanduja [12] considered the following uniqueness problem for simple transcendental extensions:

"Suppose that K is a simple transcendental extension of K_0 and v is an extension of v_0 with value group G such that G/G_0 is not a torsion group. Does there exist an element of K which satisfies the uniqueness property for $v/v_0"\text{?}"

It was proved that the answer to the above question is "yes" if (a) either (K_0,v_0) is henselian (b) or v_0 is of rank 1 with G_0, a cofinal subset of G (cf.[12, Theorem 2.1]). The
example in [12, §5] shows that the hypothesis (a), (b) is not superfluous.

In this chapter, we deal with the uniqueness problem in a more general set-up viz. when K is a function field of a conic over K_0, i.e, $K = K_0(x,y)$ where (x,y) satisfies an irreducible polynomial of degree 2 over K_0. We shall prove:

THEOREM 1.1. Let K be a function field of a conic over K_0. Let v_0 be a valuation of K_0 with value group G_0 and v be an extension of v_0 to K with value group G such that G/G_0 is not a torsion group. Then there exists an explicitly constructible element of K which satisfies the uniqueness property for v/v_0 provided

(i) either (K_0, v_0) is henselian,

(ii) or v_0 is of rank 1, the algebraic closure of K_0 in K is a purely inseparable extension of K_0 and G_0 is a cofinal subset of G.

§2. DEFINITIONS, NOTATIONS AND SOME PRELIMINARY RESULTS

A field K, which is a function field of a conic over K_0, is said to be a regular function field of a conic over K_0, if (i) K/K_0 is a separably generated extension; (ii) K_0 is algebraically closed in K.

Observe that a simple transcendental extension $K_0(t)$ of a field K_0 is a (regular) function field of a conic over K_0 which can be visualized on writing $K_0(t)$ as $K_0(t,1/t)$ where
(t, 1/t) satisfies the equation \(XY - 1 = 0\).

We shall use \(X, Y\) for indeterminates and write \(Z\), for the additive group of integers.

As in [30], for any \(c\) in the base field \(K_0\), \(H_c(X, Y)\) will stand for the polynomial \(X^2 - XY - cy^2\) or \(X^2 - cy^2\) according as characteristic of \(K_0\) is 2 or not. It is a routine calculation to check that if \(c\) and \(d\) are non-zero elements of \(K_0\), then the polynomial \(H_c(X, Y) - d\) is irreducible over \(K_0\).

The following Proposition 1.2 and Lemma 1.3 have been proved by an elementary method by Ohm (cf. [30, Theorem 2.3, Corollary 2.10]). We omit their proofs.

Proposition 1.2. Let \(K\) be a regular function field of a conic over a field \(K_0\). Then one can determine (by an explicit algorithm) non-zero elements \(c\) and \(d\) in \(K_0\) such that \(K = K_0(x, y)\) where \((x, y)\) satisfies \(H_c(X, Y) - d = 0\).

Lemma 1.3. Let \(K = K_0(x, y)\) be a regular function field of a conic over \(K_0\) with \(x, y\) related by \(H_c(x, y) - d = 0\) for some non-zero elements \(c, d\) in \(K_0\). Let \(\alpha\) be a root of the quadratic polynomial \(H_c(X, 1)\). Then \(K(\alpha)\) is a simple transcendental extension of \(K_0(\alpha)\) having \(z = x - \alpha y\) as a generator.

Fundamental Inequality 1.4. If \(u_0\) is a valuation of field \(F_0\) and \(u_1, u_2, \ldots, u_s\) are all the non-equivalent prolongations of \(u_0\) to a finite extension \(F\) of \(F_0\), then it is well known...
(cf. [7, §8.3, Theorem 1]) that
\[\sum_{i=1}^{m} e_i f_i \leq [F : F_0] \]

where \(e_i, f_i \) denote respectively the ramification index and the residual degree of the extension \(u_i/u_0 \).

The following lemma proves Theorem 1.1 in a special case.

Lemma 1.5. Let \(K, K, \alpha \) and \(z \) be as in Lemma 1.3. Let \(v_0 \) be a valuation of a field \(K_0 \) with value group \(G_0 \) and \(v \) be a prolongation of \(v_0 \) to \(K \) such that \(G/G_0 \) is a non-torsion group. Assume that (i) either \((K_0, v) \) is henselian; (ii) or \(v_0 \) is of rank 1 with \(G_0, a \) cofinal subset of \(G \). If \(w \) is an extension of \(v \) to \(K(\alpha) \) such that \(w(z) \) is non-torsion modulo \(G_0 \), then one can explicitly construct an element of \(K \), which satisfies the uniqueness property for \(v/v_0 \).

Proof. The lemma needs to be proved only when \(\alpha \not \in K_0 \), for if \(\alpha \in K_0 \), then clearly \(z \) satisfies the uniqueness property for \(v/v_0 \). Let \(\bar{\alpha} \) denote the other root of the quadratic polynomial \(H_c(x, 1) \) and \(\bar{z} \), the element \(x - \bar{\alpha}y \) of \(K(\alpha) \) and \(\sigma \), the automorphism of \(K(\alpha)/K \) defined by \(\sigma(\alpha) = \bar{\alpha} \). Observe that if \(\alpha \not \in K_0 \), then \(\sigma \) is the unique non-trivial automorphism of \(K(\alpha)/K \).

Assume first that \(v_0 \) has a unique extension, \(v_1 \) (say) to \(K_0(\alpha) \). We show that the element \(t = z + \bar{z} \) of \(K \) satisfies the uniqueness property for \(v/v_0 \) in this case. Keeping in view
that $z\tilde{z}=d$ and $w(z)$ is non-torsion modulo $G\omega$, it can be easily seen that $w(z) \neq w(\tilde{z})$ and $w(\tilde{z})$ is non-torsion modulo $G\omega$. Hence, by the strong triangle law

$$v(t) = w(t) = w(z+\tilde{z}) = \min\{w(z), w(\tilde{z})\},$$

which implies that $v(t)$ is non-torsion modulo $G\omega$. So the valuation v^t_ω of the field $K_\omega(t)$, obtained by restricting v, is defined on $K_\omega[t]$ by

$$v^t_\omega(\sum a_it^i) = \min\{v_\omega(a_i) + iv(t)\}. \quad (1)$$

By hypothesis, v_1 is the only prolongation of v_ω to $K_\omega(\alpha)$. It is immediate from (1) that v^t_ω has a unique prolongation to $K_\omega(\alpha,t)$, which we denote by v^t_1. The valuations w and w_ω of $K(\alpha)$, being prolongations of v^t_ω, extend the valuation v^t_1. Keeping in view that $[K(\alpha):K_\omega(\alpha,t)] = [K_\omega(\alpha,z):K_\omega(\alpha,t)] = 2$, it now follows from the Fundamental Inequality 1.4 that w and w_ω are the only two extensions of v^t_1 (and hence of v^t_ω) to $K(\alpha)$. Since w and w_ω coincide with v on K, it is now clear that v is the unique extension of v^t_ω to K and the lemma is proved in the first case.

Consider now the case, when v_ω has two extensions to $K_\omega(\alpha)$. As (K_ω, v_ω) won’t be henselian in this case, in view of the hypothesis, v_ω is of rank 1 and G_ω is cofinal in G. We claim that the element

$$t = (z+a+b)(\tilde{z}+\tilde{a}+\tilde{b})/(z+b)(\tilde{z}+\tilde{b}) \quad (2)$$

13
of K satisfies the uniqueness property for v/v_0 for suitably chosen a,b in $K_0(\alpha)$.

Let v_1 denote the prolongation of v_0 to $K_0(\alpha)$, obtained by restricting w to $K_0(\alpha)$, then the other prolongation v_2 of v_0 to $K_0(\alpha)$ is given by

$$v_2(\beta) = v_1(\tilde{\beta}), \; \beta \in K_0(\alpha).$$ \hspace{1cm} (3)$$

Since G_0 is a cofinal subset of G, by the Approximation theorem [10, Page 24(3.13)], we can choose $b \in K_0(\alpha)$, satisfying

$$v_1(b) > w(z), \hspace{1cm} (4)$$

$$v_2(b) < v_0(d) - w(z). \hspace{1cm} (5)$$

Further choose $a \in K_0(\alpha)$ such that

$$v_1(a) < w(z), \hspace{1cm} (6)$$

$$v_2(a+b) > v_0(d) - w(z). \hspace{1cm} (7)$$

By (4), (6) and the strong triangle law, we have

$$w(z+a+b) = v_1(a). \hspace{1cm} (8)$$

Using the relation $z\bar{z} = d$, we have

$$w(\bar{z}+\bar{a}+\bar{b}) = w(d+z(a+b))-w(z).$$

It now follows from (3), (7) and the strong triangle law that
In view of (8) and (9), the \(w \)-valuation of the element \(t \) defined by (2) is given by

\[
w(t) = v_1(a) + v_o(d) - w(z) - w(z+b) - w(z+b).
\]

By virtue of (4) and the strong triangle law, we see that

\[
w(z+b) = w(z).
\]

Using \(z^2 = d \), (3), (5) and the strong triangle law, we have

\[
w(z+b) = w(d+bz) - w(z) = v_2(b).
\]

Consequently

\[
w(t) = v_1(a) + v_o(d) - v_2(b) - 2w(z). \tag{10}
\]

In particular \(w(t) \) is non-torsion modulo \(G_o \), as \(w(z) \) is given to be so.

Let \(v_o^t, v_1^t \) denote the restrictions of \(w \) to \(K_o(t) \) and \(K_o(\alpha,t) \) respectively. Since \(v_o \) has two prolongations to the quadratic extension \(K_o(\alpha) \) of \(K_o \), it follows from Fundamental Inequality 1.4 that the value group of \(v_1 \) is \(G_o \) and hence by virtue of (10), the value group of \(v_1^t \) is \(G_o + Z2w(z) \). As the value group of \(w \) is \(G_o + Zw(z) \), the index of ramification of \(w/v_1^t \) is 2. Since, by Lüroth Lemma ([41, Page 197]), \([K(\alpha):K_o(\alpha,t)]\)=2, in view of the Fundamental Inequality 1.4,
it is now clear that \(w \) is the only extension of \(\nu^t_1 \) to \(K(\alpha) \). As \(\sigma \) maps \(K_0(\alpha,t) \) onto itself, we conclude that \(w \sigma \) is the only extension of the valuation \(\nu^t_2 \), obtained by restricting \(w \sigma \) to \(K_0(\alpha,t) \). The valuations \(\nu^t_1 \) and \(\nu^t_2 \) being the only distinct extensions of \(\nu^t_0 \) to \(K_0(\alpha,t) \), it now follows that \(w \) and \(w \sigma \) are the only extensions of \(\nu^t_0 \) to \(K(\alpha) \). As these valuations coincide with \(\nu \) on \(K \), it is the only extension of \(\nu^t_0 \) to \(K \).

This completes the proof of the lemma.

DEFINITION 1.6. For a finite extension \((F,u)/(F_0,u_0)\) of valued fields, the **henselian defect** of the extension is defined to be \([F^h:F_0^h]/e_f\) where 'h' stands for the henselization with respect to the underlying valuation and \(e, f \) for the ramification index and the residual degree of \(u/u_0 \).

A FUNDAMENTAL EQUALITY 1.7. If \(u_0 \) is a valuation of a field \(F_0 \) and \(u_1, u_2, \ldots, u_m \) are all the non-equivalent prolongations of \(u_0 \) to a finite extension \(F \) of \(F_0 \), then it is well known [cf. (10, Page 125(17.3))] that

\[
[F:F_0] = \sum_{i=1}^{m} \left[(F,u_i)^h:(F_0,u_0)^h \right] = \sum_{i=1}^{m} e_i f_i d_i
\]

where 'h' stands for the henselization and \(e_i, f_i, d_i \) denote respectively the ramification index, the residual degree and the henselian defect of the extension \(u_i/u_0 \).

NOTATIONS. Let \(w_0 \) be a valuation of a field \(L_0 \) with value group \(H_0 \) and residue field \(\Lambda_0 \), \(w \) be a prolongation of \(w_0 \) to a
simple transcendental extension $L = L_0(x)$ with residue field Δ and value group H such that H/H_0 is a non-torsion group. As in [12, §2], it can be easily seen that Δ/Δ_0 is a finite extension and H_1/H_0 is a finite group where

$$H_1 = \{ h \in H | h \text{ is torsion modulo } H_0 \}.$$

We shall denote by N, S, I (to be more precise by $N(w/w_0)$ etc.), the natural numbers defined by

$$N = \min \{ \deg f | f \in L_0[x], w(f) \text{ is non-torsion modulo } H_0 \},$$

$$S = [\Delta : \Delta_0],$$

$$I = [H_1 : H_0].$$

Corresponding to an element $t \in L$, with $w(t)$ non-torsion modulo H_0, let $D_h(t)$ denote the henselian defect of the extension $(L, w)/(L_0(t), w_0^t)$, where w_0^t is the restriction of the valuation w to $L_0(t)$. It has been proved by Kuhlmann (cf. [17, Theorem 5.4]) or (cf. [18]) that $D_h(t)$ is independent of the choice of the element t in L, whenever $w(t)$ is non-torsion modulo H_0. We shall denote $D_h(t)$ by D_h or more precisely by $D_h(w/w_0)$.

The following results labelled as Theorems A, B are already known (cf. [12, Theorems 2.1, 2.2]) and are quoted for future reference.
THEOREM A. Let $L \subseteq L$, w_0, w, N, S, I and D_h be as above. Then there exists an element of L which satisfies the uniqueness property for w/w_0, if and only if, $N = ISD_h$ holds.

THEOREM B. Let $L \subseteq L$, w_0, w and $H_0 \subseteq H$ be as before. Suppose that

(i) either (L_0, w_0) is henselian,

(ii) or (L_0, w_0) has rank 1 and H_0 is a cofinal subset of H. Then any $t \in L_0[x]$, of minimum degree N such that $w(t)$ is non-torsion modulo H_0, satisfies the uniqueness property for w/w_0.

§3. PROOF OF THEOREM 1.1

In view of the fact that any valuation of a field F has a unique prolongation to a purely inseparable extension of F (see[10,Page 98(13.8)]), it may be assumed that K_0 is algebraically closed in K. Without loss of generality, we may assume that K is a regular function field of a conic over K_0, for if $K = K_0(x', y')$ where (x', y') satisfies an irreducible polynomial relation of degree 2 over K_0 and x' is transcendental over K_0, then the assumption K/K_0, not separable, would lead to y', being algebraic and purely inseparable over $K_0(x')$; consequently, any element of $K_0(x')$ which satisfies the uniqueness property for $K_0(x')/K_0$ would do so for K/K_0 also.

Keeping in view Proposition 1.2, one can find (by an
explicit algorithm) non-zero elements c and d in K₀ such that
K = K₀(x,y) where (x,y) satisfies the equation H₉(X,Y)-d = 0.
As before, α₁, α will stand for the roots of the polynomial
H₉(X,1), z, z for the generators x - α₁y, x - αy of the simple
transcendental extension K(α)/K₀(α) and σ for the automorphism
of K(α)/K defined by σ(α) = α₁.

We fix a prolongation w of v to K₀ = K₀(z), where K₀ is
the algebraic closure of K₀. Let w₀, w be the restrictions of
w to K₀(α), K(α) respectively; H₀, H be their value groups and
Δ₀, Δ their respective residue fields. In what follows, N, S, I
and Dₗ will stand for N(w/w₀) etc. relative to the extension
(K(α), w)/(K₀(α), w₀). By Theorems A and B, we have

N = ISDₗ.

(11)

If w(z) is non-torsion modulo G₀, then in view of Lemma
1.5 the theorem is already proved. So from now onwards, we may
assume that w(z) is torsion modulo G₀.

We denote by D, the non-empty subset of K₀, defined by

D = { γ ∈ K₀ | w(z-γ) is non-torsion modulo G₀).

Choose an element β of D such that

[K₀(α, β):K₀(α)] ≤ [K₀(α, γ):K₀(α)]

for all γ in D. Since w(z) is torsion modulo G₀, β can't be
zero. We denote by P(X) = a₀ + a₁X + a₂X² + + Xₙ, the
minimal polynomial of β over $K_\circ(a)$ and by μ, the \tilde{w}-valuation of $(z-\beta)$. The roots $\beta_1 = \beta, \beta_2, \ldots, \beta_n$ of $P(X)$ are arranged so that $\tilde{w}(z-\beta_i)$ is non-torsion modulo G_\circ for $1 \leq i \leq m$ and $\tilde{w}(z-\beta_i)$ is torsion modulo G_\circ for $i \geq m + 1$.

Since $\tilde{w}(z-\beta)$ is non-torsion modulo G_\circ, for any $\delta \in \bar{K}_\circ$, we see that $\tilde{w}(\beta-\delta) \neq \tilde{w}(z-\beta) = \mu$ and hence

$$\tilde{w}(z-\delta) = \min \{\mu, \tilde{w}(\beta-\delta)\}. \quad (12)$$

Consequently

$$w(P(z)) = \sum_{i=1}^{n} \tilde{w}(z-\beta_i) = m\mu + \sum_{i=m+1}^{n} \tilde{w}(\beta-\beta_i) = \vartheta(\text{say}) \quad (13)$$

is non-torsion modulo G_\circ, which implies that $n \geq N$. It is clear from the definition of N that $\tilde{w}(z-\gamma)$ is non-torsion modulo G_\circ for some root γ of a polynomial of degree N over $K_\circ(a)$. Thus $n = N$.

Since $z \tilde{w} = d$, the monic polynomial $P_1(z)$ (in the transcendental element z over $K_\circ(a)$), defined by

$$\sigma(P(z)) = \sum_{i=0}^{N-1} \tilde{a}_i \tilde{z}^i + \tilde{z}^N = \tilde{a}_0 P_1(z)/z^N \quad (14)$$

has degree N and is not divisible by z. It follows from Lüroth Lemma [41, Page 197] and (11) that if $t = P(z)\sigma(P(z))$, then

$$[K_\circ(a,z):K_\circ(a,t)] = 2N = 2ISD_h. \quad (15)$$

Two cases are distinguished:
Case I. w is the only extension of v to $K(a)$. We claim that the element $t = P(z)\sigma(P(z))$ of K satisfies the uniqueness property for v/v in this case.

We split two sub cases.

Sub case (i). $w(\sigma(P(z))$ is non-torsion modulo G. It is clear from (14) that in the present situation, $w(P_1(z))$ is also non-torsion modulo G, by virtue of the fact that $w(z)$ is torsion modulo G. Observe that $w(P(z)) = w(P_1(z))$, for otherwise, in view of the strong triangle law,

$$w(P(z) - P_1(z)) = \min\{w(P(z)), w(P_1(z))\}$$

which would imply that the w-valuation of the polynomial $P(z) - P_1(z)$ of degree less than N is non-torsion modulo G, contradicting the choice of N. It now follows from (13) and (14) that

$$w(t) = w(P(z)) + w(\sigma(P(z))) = 2\theta + w(\tilde{a}_0) - w(z^N); \quad (16)$$

in particular, $w(t)$ is non-torsion modulo G. By [12, Lemma 3.1], the value group H of w is $H_1 + \mathbb{Z}\theta$, where

$$H_1 = \{h \in H \mid h \text{ is torsion modulo } H_0\}.$$

Let w_t denote the valuation of $K(a,t)$, obtained by restricting w; in view of (16), the ramification index of w/w_t is given by
As in [7, §10.1, Proposition 1], it can be easily seen that the residue field of \(\omega^t_o \) is same as that of \(\omega_o \) and so the residual degree of \(\omega/\omega^t_o \) is \(S \). Since the henselian defect of \(\omega/\omega^t_o \) is \(D_h \), it is immediate by virtue of Fundamental Equality 1.7 and (15), that \(\omega \) is the only extension of \(\omega^t_o \) to \(K(\alpha) \). In view of the hypothesis of case I, \(\omega^t_o \) is the only extension of \(\nu^t_o \) to \(K_o(\alpha, t) \), therefore \(\nu \) is the only extension of \(\nu^t_o \) to \(K \) as desired.

Subcase (ii). \(w(\sigma(P(z))) \) is torsion modulo \(G_o \).

Then clearly

\[
w(t) = w(P(z)) + w(\sigma(P(z))) = \theta + w(\sigma(P(z))) = \theta + w(\sigma(P(z)))
\]

is non-torsion modulo \(G_o \).

Let \(\omega^t_o \) denote the restriction of \(w \) to \(K_o(\alpha, t) \). Keeping in view formula (1) and the fact that \((\omega_o \sigma)(\delta) = \omega_o(\delta) \) for \(\delta \in K_o(\alpha) \), it is clear that the valuation \(w_0 \sigma \) of \(K(\alpha) \) also extends \(\omega^t_o \). Arguing as in the previous sub case, the ramification index of \(w/\omega^t_o \) is easily seen to be \(I \). Since \(\sigma \) maps the field \(K_o(\alpha, t) \) onto itself, it follows that the ramification index, the residual degree and the henselian defect of \(w_0 \sigma/\omega^t_o \) are the same as the ones of \(w/\omega^t_o \). It is now clear in view of Fundamental Equality 1.7 and (15) that \(w \) and \(w_0 \sigma \) are the only two extensions of \(\omega^t_o \) (and hence of \(\nu^t_o \)) to \(K(\alpha) \). Since \(w, w_0 \sigma \) coincide with \(\nu \) on \(K \), we conclude that \(\nu \) is the unique extension of \(\nu^t_o \) to \(K \).
Case II. When ν_o has two extensions to $K_o(\alpha)$.

As (K_o, ν_o) won't be henselian in this case, ν_o is of rank 1 and G_o is cofinal in G.

Recall that w_o is the extension of ν_o to $K_o(\alpha)$, obtained by restricting w. The other prolongation \overline{w}_o(say) of ν_o to $K_o(\alpha)$ is given by

$$\overline{w}_o(\beta) = w_o(\sigma(\beta)), \beta \in K_o(\alpha).$$

We discuss two sub cases.

Subcase (i). $w(\sigma(P(z)))$ is non-torsion modulo G_o.

We show that $t = P(z)\sigma(P(z))$ satisfies the uniqueness property in this sub case. Proceeding exactly as in the sub case(i) of case I, it can be shown that $w(t)$ is non-torsion modulo G_o and w is the only extension of w^t_o to $K(\alpha)$, where w^t_o denote the restriction of w to $K_o(\alpha,t)$. Consequently, $w^t_o\sigma$ is the only extension of the valuation \overline{w}_o^t obtained by restricting $w^t_o\sigma$ to $K_o(\alpha,t)$. Since w^t_o, \overline{w}_o^t constitute all the extensions of v^t_o to $K_o(\alpha,t)$, it follows that w and $w^t_o\sigma$ are the only extensions of v^t_o to $K(\alpha)$. As $w, w^t_o\sigma$ agree with ν on K, we conclude that ν is the unique extension of v^t_o to K.

Subcase (ii). $w(\sigma(P(z)))$ is torsion modulo G_o.

In view of sub case (i) of case II, it is enough to construct an element $\gamma \in K_o(\alpha, \beta) \cap D$, whose minimal polynomial $Q(X)$ (say) over $K_o(\alpha)$ satisfies $w(\sigma(Q(z)))$ is non-torsion
To choose γ, we consider two possibilities.

Suppose first that $\alpha \notin K_0(\beta)$. Let τ denote the automorphism of $K_0(\alpha, \beta)/K_0(\beta)$ defined by $\tau(\alpha) = \overline{\alpha}$ and ω_1, the valuation obtained by restricting ω to $K_0(\alpha, \beta)$. By the Approximation theorem [10, Page 24 (3.13)], applied to the valuations ω_1 and $\omega_1 \tau$, we can find an element $\xi \in K_0(\alpha, \beta)$ such that

\begin{align*}
\omega_1(\xi - \beta^{-1}) &> \max \{\omega_1(\beta^{-1}), \mu - 2\omega_1(\beta)\}, & (19) \\
(\omega_1 \tau)(\xi - \beta \gamma^{-1}) &> \mu - v_0(d). & (20)
\end{align*}

Define $\gamma = 1/\xi$. It is immediate from (19) that $\omega_1(\beta) = \omega_1(\gamma)$ and $\omega_1(\beta - \gamma) > \mu$, consequently $\gamma \in D$.

In view of (20) and the fact that $\tau(\beta) = \beta$, we have

$$\omega_1(\tau(\xi) - \beta) > \mu$$

which combined with $\omega_1(z - \beta) = \mu$ gives

$$\omega_1(\tau(\xi) - z) = \mu,$$

i.e.,

$$\omega_1(z - \tau(\gamma)) = \mu - \omega_1(\tau(\xi)). & (21)$$

We are now in a position to show that $w(\sigma(Q(z)))$ is non-torsion modulo G_0, where $Q(X)$ is the minimal polynomial of γ over $K_0(\alpha)$. Let $\overline{\sigma}$ be an automorphism of $K\overline{K}_0/K$ which coincides with τ on $K_0(\alpha, \beta)$; such an automorphism exists.
because K being a regular extension of \(K_0 \) is linearly disjoint from \(\bar{K}_0 \) over \(K_0 \). (cf [20, Chapter 3, §1, Theorem 2]).

Let \(\gamma_1 = \gamma, \gamma_2, \ldots, \gamma_N \) be all the roots of the polynomial \(Q(X) \). Then

\[
\hat{w}(\sigma(Q(z))) = \sum_{i=1}^{N} \hat{w}(z-\sigma(\gamma_i)) = \sum_{i=1}^{N} \hat{w}(d-z\sigma(\gamma_i)) - N\hat{w}(z).
\]

Keeping in view (21), (12) and the assumption \(\hat{w}(z) \) is torsion modulo \(G_0 \), we conclude from the last equation that \(\hat{w}(\sigma(Q(z))) \) is non-torsion modulo \(G_0 \) as desired.

The remaining possibility when " \(\alpha \in K_0(\beta) \) " will be disposed of by showing that we can find an element \(\beta' \) of \(D \) which is algebraic of degree \(N \) over \(K_0(\alpha) \) such that \(\alpha \notin K_0(\beta') \).

Since the valuation \(v_0 \) of \(K_0 \) has two prolongations to the separable quadratic extension \(K_0(\alpha) \), therefore by [10, Page 16(2.12)], \(\alpha \) belongs to the completion \(\hat{K}_0 \) of \(K_0 \) with respect to \(v_0 \). Since \(K_0 \) is dense in \(\hat{K}_0 \), corresponding to the coefficients \(a_0, a_1, \ldots, a_{N-1} \) of \(P(X) \in K_0(\alpha)[X] \), we can choose \(b_0, b_1, \ldots, b_{N-1} \in K_0 \) such that

\[
w_0(b_i-a_i) > Nu + i\lambda, \quad 0 \leq i \leq N-1, \quad (22)
\]

where \(\lambda = \max\{-\hat{w}(\beta), \hat{w}(\beta)\} \). Set
\[R(X) = X^N + b_{N-1}X^{N-1} + \ldots + b_0. \]

We claim that there exists a root \(\beta' \) of \(R(X) \) such that \(\tilde{w}(\beta - \beta') > \mu \). Suppose not, then for each root \(\alpha_i \) of \(R(X) \), \(\tilde{w}(\beta - \alpha_i) \leq \mu \). Consequently,

\[
\tilde{w}(P(\beta) - R(\beta)) = \tilde{w}(R(\beta)) = \sum_{i=1}^{N} \tilde{w}(\beta - \alpha_i) \leq N\mu;
\]

this is impossible because by (22)

\[
\tilde{w}(P(\beta) - R(\beta)) = \tilde{w}(\sum_{i=0}^{N-1} (a_i - b_i)\beta^i) \geq \min \{ \tilde{w}(a_i - b_i) - i\lambda \} > N\mu.
\]

Hence the claim.

It only remains to be shown that \(\alpha \notin K_0(\beta') \). If \(\alpha \in K_0(\beta') \), then keeping in view that \(\beta' \) is algebraic over \(K_0 \) of degree not exceeding \(N \) and that every element of \(D \) is algebraic over \(K_0(\alpha) \) of degree not less than \(N \), we are led to

\[
N \geq [K_0(\beta') : K_0] = [K_0(\alpha, \beta') : K_0] = [K_0(\alpha, \beta') : K_0(\alpha)][K_0(\alpha) : K_0] \geq 2N.
\]

This contradiction proves the desired result.