Chapter 4

The Closure Operator and the Cocircuits of the es-Splitting Matroid

In this chapter, we characterize the closure operator and the cocircuits of the es-splitting binary matroid M^c_X in terms of the closure operator and the cocircuits of the original binary matroid M, respectively.

4.1 Introduction

We know that Shikare and Azanchiler [14] extended Slater’s [38] n-line splitting operation from graphs to binary matroids. We call the corresponding operation as es-splitting operation.

Azanchiler [15] explored a few properties concerning the es-splitting operation. He characterized the bases of the es-splitting matroid in terms of the bases of the original matroid M.

For convenience we use the following notations.
4.1 Introduction

1. C_{OX} denotes the set of all circuits of a matroid M each of which contains an odd number of elements of the set $X \subseteq E(M)$. The members of the set C_{OX} are called OX-circuits.

2. C_{EX} denotes the set of all circuits of a matroid M each of which contains an even number of elements of the set $X \subseteq E(M)$. The members of the set C_{EX} are called EX-circuits.

Let cl and cl' be the closure operators of the matroids M and M_X, respectively. The following result characterizes the rank function of the matroid M_X in terms of the rank function of the matroid M.

Lemma 4.1.1. Let r and r' be the rank functions of the matroids M and M_X, respectively. Suppose that $A \subseteq E(M)$. Then

1. $r'(A) = r(A) + 1$, if A contains an OX-circuit of the matroids M; $= r(A)$; otherwise.

2. $r'(A \cup a) = r(A) + 1$.

3. $r'(A \cup \gamma) = r(A)$ if not A but $A \cup e$ contains an OX-circuit;
 $= r(A) + 2$; if A contains an OX-circuit and $e \notin cl(A)$;
 $= r(A) + 1$; otherwise.

4. $r'(A \cup \{a, \gamma\}) = r(A) + 1$ if $e \in cl(A)$;
 $= r(A) + 2$ if $e \notin cl(A)$.

Proof. The proofs of the statements (1) and (2) are given in [15]. We prove (3) and (4).

3. If A contains no OX-circuit of M, then by (1), $r'(A) = r(A)$. Further, if there is an OX-circuit C of M such that $e \in C \subseteq A \cup e$,
then $C' = (C \setminus e) \cup \gamma$ is a circuit of M'_X contained in $A \cup \gamma$. Consequently,
$r'(A \cup \gamma) = r'(A) = r(A)$.

Suppose, A contains an OX-circuit of M or $e \notin cl(A)$. Let T and T' be bases for A in M and M'_X, respectively. Then, $r(A) = |T|$ and $r'(A) = |T'| = |T| + 1 = r(A) + 1$. We show that $T' \cup \gamma$ is a basis for $A \cup \gamma$ in M'_X. On the contrary, suppose $T' \cup \gamma$ is dependent in M'_X and C' is a circuit of M'_X contained in $T \cup \gamma$. Then, by Proposition 3.1.8, one of the following four cases occurs:

(i) $C' \in C_0$. Then C' is a EX-circuit of M and $\gamma \notin C'$. Now $C' \subseteq T' \cup \gamma$ implies that $C' \subseteq T'$; a contradiction.

(ii) $C' \in C_1$. So that $C' \subseteq T' \cup \gamma$ and hence $C' \subseteq T'$; a contradiction.

(iii) $C' \in C_2$. Then $C' = C \cup a \subseteq T' \cup \gamma$ implies that $a \in T'$; a contradiction.

(iv) Let $C' \in C_3$. Then one of the following three sub cases occurs.

(a) $C' = C \cup \{a, \gamma\}$. Then $C' \subseteq T' \cup \gamma$ this implies that $C \cup e \subseteq T' \subseteq A$; a contradiction.

(b) $C' = (C \setminus e) \cup \gamma$. This implies that $C' \subseteq T' \cup \gamma$ and hence $(C \setminus e) \subseteq T' \subseteq A$. Consequently, $e \in cl(A)$; a contradiction.

(c) $C' = (C \setminus e) \cup \{a, \gamma\}$. Then $C' \subseteq T' \cup \gamma$ and $(C \setminus e) \cup a \subseteq T' \subseteq A$. Consequently, $a \in A$; a contradiction.

Further, we prove that $T' \cup \gamma \subseteq E(M'_X)$ is a maximal independent set in M'_X and is contained in $A \cup \gamma$. On the contrary, suppose $T' \cup \{\gamma, z\}$
is independent in M^c_X and is contained in $A \cup \gamma$ where $z \in A - (T' \cup \gamma)$. Then $T' \cup \{\gamma, z\} \subseteq A \cup \gamma$ and $(T' \cup z) \subseteq A$. But this is a contradiction to the maximality of T'. Therefore, $T' \cup \gamma$ is a basis of $A \cup \gamma$. Thus, $r'(A \cup \gamma) = |T' \cup \gamma| = |T'| + 1 = r'(A) + 1 + 1 = r(A) + 2$.

If A contains no OX-circuit of M and $e \notin cl(A)$, then by (1), $r'(A) = r(A)$. Now by similar argument as given above, one can show that $r'(A \cup \gamma) = |T' \cup \gamma| = |T'| + 1 = r'(A) + 1 = r(A) + 1$.

If A contains an OX-circuit C_1 of M and $e \in cl(A)$, then one of the following two cases occurs.

(i) There is an OX-circuit C of M such that $e \in C \subseteq A \cup e$. Then $C' = (C \setminus e) \cup \gamma$ is a circuit of M^c_X contained in $A \cup \gamma$. Consequently, $r'(A \cup \gamma) = r'(A) = r(A) + 1$.

(ii) There is no OX-circuit C of M such that $e \in C \subseteq A \cup e$. Then there is an EX-circuit C of M such that $e \in C \subseteq A \cup e$ which is also a circuit of M^c_X. Thus, $e \in cl'(A)$ and $r'(A \cup e) = r'(A)$. Then, by Proposition 3.1.8, $C_1 \cup \{e, \gamma\}$ is a circuit of M^c_X contained in $A \cup \{e, \gamma\}$. Therefore, $r'(A \cup \{e, \gamma\}) = r'(A \cup \gamma) = r'(A \cup e) = r'(A) = r(A) + 1$.

(4) Let $A \subseteq E(M)$ and $e \in cl(A)$. Note that $\{a, e, \gamma\}$ forms a circuit of M^c_X, therefore, $r'(A \cup \{a, \gamma, e\}) = r'(A \cup \{a, \gamma\}) = r'(A \cup \{\gamma, e\}) = r'(A \cup \{a, e\})$. By statement (2), we have $r'(A \cup a) = r(A) + 1$.

If $e \in cl(A)$, then one of the following two cases occurs.

(i) There is an OX-circuit C of M such that $e \in C \subseteq A \cup e$. Then, $C' = (C \setminus e) \cup \gamma$ is a circuit of M^c_X contained in $A \cup \gamma \subseteq A \cup \{a, \gamma\}$.
Consequently, \(r'(A \cup \{a, \gamma\}) = r'(A \cup a) = r(A) + 1 \).

(ii) There is an \(EX\) -circuit \(C \) of \(M \) such that \(e \in C \subseteq A \cup e \). Then, by Proposition 3.1.8, \((C \setminus e) \cup \{a, \gamma\}\) is a circuit of \(M_X^e \) contained in \(A \cup \{a, \gamma\} \). Therefore, \(r'(A \cup \{a, \gamma\}) = r'(A \cup a) = r(A) + 1 \).

If \(e \notin \text{cl}(A) \), then by Proposition 3.1.8, \(A \cup \{a, \gamma\} \) contains no circuit \(C' \) of \(M_X^e \) such that \(\gamma \in C' \). Let \(T' \) be the basis of \(A \) in \(M_X^e \). Then, by argument similar as given above, one can show that \(T' \cup \{a, \gamma\} \) is a basis of \(A \cup \{a, \gamma\} \). Thus, \(r'(A \cup \{a, \gamma\}) = r'(A \cup a) + 1 = r(A) + 1 + 1 = r(A) + 2 \).

The relation between \(r(M) \) and \(r'(M_X^e) \) now follows from the Lemma 4.1.1.

Corollary 4.1.2. Let \(r \) and \(r' \) be the rank functions of the matroids \(M \) and \(M_X^e \), respectively. Then, \(r'(M_X^e) = r(M) + 1 \).

Lemma 4.1.3. Let \(M \) be a matroid on \(E \) with rank function \(r \), and let \(A \subseteq E \). Then \(\text{cl}(A \cup x) = \text{cl}(A) \) if and only if \(x \in \text{cl}(A) \).

Proof. Suppose \(x \in \text{cl}(A) \). Then \(r(A) = r(A \cup x) \). We prove that \(\text{cl}(A \cup x) \subseteq \text{cl}(A) \). Let \(y \in \text{cl}(A \cup x) \). If \(y \in (A \cup x) \), then we are through. If \(y \in \text{cl}(A \cup x) - (A \cup x) \), then \(r(A \cup x) = r(A \cup \{x, y\}) \). Therefore, \(r(A) = r(A \cup \{x, y\}) \) and \(y \in \text{cl}(A) \). Thus, \(\text{cl}(A \cup x) \subseteq \text{cl}(A) \).

We conclude that \(\text{cl}(A \cup x) = \text{cl}(A) \). \(\square \)

Definition 4.1.4. Let \(M \) be a matroid on a set \(E \) with rank function \(r \), \(X \subset E \) and \(A \subseteq E \). Then for a subset \(A \) of \(E \) define the sets \(\mathcal{T}(A) \) and \(\mathcal{F}(A) \) as follows.
1. $\mathcal{T}(A) = \{x \in (E - A) \mid x \neq e \text{ and there is an } OX\text{-circuit } C \text{ of } M \text{ such that } x \in C \text{ and } C \subseteq (A \cup e) \cup x\}$.

2. $\mathcal{F}(A) = \{x \in (cl(A) - A) \mid \text{there is an } OX\text{-circuit } C \text{ of } M \text{ such that } x \in C \text{ and there is no } EX\text{-circuit of } M \text{ containing } x\}$.

We have the following proposition.

Proposition 4.1.5. If $e \in cl(A)$, then the set $\mathcal{T}(A) \subseteq cl(A)$.

Proof. Let $e \in cl(A)$ and $x \in \mathcal{T}(A)$. Then there is a circuit C of the matroid M such that $x \in C$ and $C \subseteq A \cup \{e, x\}$. Consequently, $x \in cl(A \cup e)$. Since $e \in cl(A)$, $cl(A \cup e) = cl(A)$. Thus $x \in cl(A)$. □

4.2 The Closure Operator of the es-Splitting Matroid

Throughout this section, we assume that M is a binary matroid on a set E and M^e_X is the splitting matroid of M with respect to a subset X of E where $e \in X$. Further, $A' \subseteq E \cup \{a, \gamma\}$ and $A = A' \setminus \{a, \gamma\}$.

In this section, we characterize the closure operator of the es-splitting matroid M^e_X in terms of the closure operator of the original matroid M.

Firstly we prove a few Lemmas concerning closure operators of M and M^e_X.

Lemma 4.2.1. Suppose that $A' \subset E \cup \{a, \gamma\}$, $a, \gamma \notin A'$ and $(A \cup e)$ contains no OX-circuit. Then $cl'(A') = cl(A) - \mathcal{F}(A)$.
Proof. Suppose, $a, \gamma \notin A'$ and $(A \cup e)$ contains no OX-circuit. Let $x \in cl'(A')$. Then $x \in A' = A$ or $x \in cl'(A') - A$. If $x \in A$, then we are through. Now if $x \in cl'(A') - A'$, then there is a circuit C' of M_eX such that $x \in C'$ and $C' \subseteq A' \cup x = A \cup x$.

If $x \in E$, then by Proposition 3.1.8, C' is a circuit of M or C' is the union of two circuits C_1 and C_2, where $C_1, C_2 \in C_{OX}$. If C' is a circuit of M, then C' is an EX-circuit. Therefore, $x \in cl(A) - F(A)$. On the other hand, if $C' = C_1 \cup C_2$, then without loss of generality assume that $x \in C_1$. Then $C_1 \cup C_2 \subseteq A \cup x$ implies that $C_2 \subseteq A$, a contradiction.

If $x = a$, then $a \in C'$ and C' is a circuit of M_eX contained in $A \cup a$. This implies that $C' = C \cup a$ where $C \in C_{OX}$. Thus, $a \in C' \subseteq A \cup a$ and hence $C \subseteq A$. This is a contradiction to the fact that A contains no member of C_{OX}. Therefore, $x \neq a$.

If $x = \gamma$, then one of the following cases occurs.

(i) $C' = C \cup \{e, \gamma\} \subseteq A \cup \gamma$ where $e \notin C$ and C contains an odd number of elements of X in M. Then $x \in C' = C \cup \{e, \gamma\} \subseteq A \cup \gamma$ and this implies that $C \subseteq A$ but this is a contradiction.

(ii) $C' = (C \setminus e) \cup \gamma \subseteq A \cup \gamma$ where C contains an odd number of elements of X and $e \in C$. It follows that $e \in C_{OX} \subseteq A \cup e$; a contradiction.

(iii) $C' = (C \setminus e) \cup \{a, \gamma\} \subseteq A \cup \gamma$ where $(C \setminus e)$ contains an odd number of elements of X and $e \in C$. This implies that $a \in A$ which is also a contradiction. Therefore, $x \neq \gamma$ and $cl'(A') \subseteq cl(A) - F(A)$.

Conversely, let $x \in cl(A) - F(A)$. If $x \in A$, then there is nothing
to prove. If \(x \in (\text{cl}(A) - A) \) and \(x \notin \mathcal{F}(A) \), then there exists an \(\text{EX} \)-circuit \(C \in \mathcal{C}_{\text{EX}} \) of \(M \) such that \(x \in C \) and \(C \subseteq A \cup x \). Now \(C' = C \) is a circuit of \(M'_{\chi} \) and \(x \in C' \subseteq A \cup x \). This implies that \(x \in \text{cl}'(A') \). We conclude that \(\text{cl}(A) - \mathcal{F}(A) \subseteq \text{cl}'(A') \).

\[\square \]

Lemma 4.2.2. Suppose that \(a, \gamma \notin A' \) and \(\text{cl}(A) \) contains no \(\text{OX} \)-circuit. Then \(\text{cl}'(A') = \text{cl}(A) \).

Proof. Suppose, \(a, \gamma \notin A' \) and \(\text{cl}(A) \) contains no \(\text{OX} \)-circuit. Then \(A' = A \). If \(x \in \text{cl}'(A') \), then \(x \in A' \) or \(x \in \text{cl}'(A') - A' \). If \(x \in A' \), then we are through. Now suppose \(x \in \text{cl}'(A') - A' \) and let \(C' \) be a circuit of \(M_{\chi} \) such that \(x \in C' \subseteq A' \cup x \).

If \(x \in E \), then by Proposition 3.1.8, \(C' \) is a circuit of \(M \) or \(C' \) is the union of two circuits \(C_1 \) and \(C_2 \), belonging to the set \(\mathcal{C}_{\text{OX}} \). If \(C' \) is a circuit of \(M \), then \(C' \) is an \(\text{EX} \)-circuit. Therefore, \(x \in \text{cl}(A) \). On the other hand, if \(C' = C_1 \cup C_2 \), then without loss of generality assume that \(x \in C_1 \). Then \(C_1 \cup C_2 \subseteq A \cup x \) implies that \(C_2 \subseteq A \), a contradiction.

If \(x = a \), then \(a \in C' \subseteq A \cup a \) in \(M'_{\chi} \) and this implies that \(C' = C \cup a \) where \(C \in \mathcal{C}_{\text{OX}} \) is a circuit of \(M \). But \(a \in C' \subseteq A \cup a \) implies that \(C \subseteq A \) and this is a contradiction to the fact that \(A \) contains no member of \(\mathcal{C}_{\text{OX}} \). Therefore, \(x \neq a \).

If \(x = \gamma \), then \(\gamma \in C' \) and \(C' \subseteq A \cup \gamma \). It follows that \(C' \) has one of the following three types of forms.

(i) \(C' = C \cup \{e, \gamma\} \subseteq A \cup \gamma \) where \(e \notin C \) and \(C \in \mathcal{C}_{\text{OX}} \) is a circuit of \(M \). Then \(C \subseteq A \) and we get a contradiction.

(ii) \(C' = (C \setminus e) \cup \gamma \subseteq A \cup \gamma \) where \(C \in \mathcal{C}_{\text{OX}} \) is a circuit of \(M \) and \(e \in C \).
Consequently, \(C \subseteq A \cup e \) and \(e \in cl(A) \). This is a contradiction to the fact that \(e \notin cl(A) \).

(iii) \(C' = (C \setminus e) \cup \{a, \gamma\} \subseteq A \cup \gamma \) where \((C \setminus e) \in C_{OX} \) is a circuit of \(M \) and \(e \in C \). We conclude that \(C \subseteq A \cup e \) and hence \(e \in cl(A) \), a contradiction.

Conversely, let \(x \in cl(A) \). If \(x \in A \), then we are through. If \(x \in cl(A) - A \), then there is a circuit \(C \) of \(M \) such that \(x \in C \subseteq A \cup x \). As \(cl(A) \) contains no member of \(C_{OX} \), \(C \) contains an even number of elements of \(X \). Thus \(C \) is also a circuit of \(M^e_X \). Thus, \(x \in cl'(A') \). This completes the proof of the Lemma.

Lemma 4.2.3. Suppose \(e \notin cl(A) \) and one of the following conditions is true.

1. \(a, \gamma \notin A' \) and there is an OX-circuit in \(A \).
2. \(a \in A' \) and \(\gamma \notin A' \).

Then \(cl'(A') = cl(A) \cup a \).

Proof. Suppose \(e \notin cl(A) \), \(a, \gamma \notin A' \) and there is an OX-circuit in \(A \). Let \(x \in cl'(A') - A' \) and \(C' \) be a circuit of \(M^e_X \) such that \(x \in C' \subseteq A' \cup x \).

If \(x \in E \), then by Proposition 3.1.8, \(C' \) is a circuit of \(M \) or \(C' \) is the union of two circuits \(C_1 \) and \(C_2 \), from the set \(C_{OX} \). If \(C' \) is a circuit of \(M \), then \(C' \) is an EX-circuit. Therefore, \(x \in cl(A) \). On the other hand if \(C' = C_1 \cup C_2 \), then without loss of generality, assume that \(x \in C_1 \) and \(C_1 \subseteq A \cup x \). Consequently, \(x \in cl(A) \).

If \(x = a \), then \(x \in cl(A) \cup a \) and if \(x = \gamma \), then \(\gamma \in C' \subseteq A \cup \gamma \) and \(e \notin cl(A) \). This implies that \(C' \) has one of the following three forms.
(i) \(C' = C \cup \{e, \gamma\} \subseteq A \cup \gamma \) where \(e \notin C \) and \(C \in \mathcal{C}_{OX} \) is a circuit of \(M \). Then \(x \in C' = C \cup \{e, \gamma\} \subseteq A \cup \gamma \). This implies that \(e \in A \), a contradiction.

(ii) \(C' = (C \setminus e) \cup \gamma \subseteq A \cup \gamma \) where \(C \in \mathcal{C}_{OX} \) is a circuit of \(M \) and \(e \in C \). Then \(e \in cl(A) \) and this leads to a contradiction.

(iii) \(C' = (C \setminus e) \cup \{a, \gamma\} \subseteq A \cup \gamma \) where \((C \setminus e) \in \mathcal{C}_{OX} \) is a circuit of \(M \) and \(e \in C \). We conclude that \(e \in cl(A) \), \(a \in A \) and this leads to a contradiction. Therefore, \(x \neq \gamma \) and \(cl'(A') \subseteq cl(A) \cup a \).

Conversely, let \(x \in cl(A) \cup a \). If \(x = a \), then \(a \in cl'(A') \) as \(A \) contains an element \(C \) of \(\mathcal{C}_{OX} \). Moreover, \(a \in C' = C \cup a \subseteq A \cup a \) in \(M_X^e \). If \(x \in A \), then we are through. Suppose \(x \in cl(A) - A \) and let \(C \) be a circuit of \(M \) contained in \(X \) such that \(x \in C \subseteq A \cup x \). If \(C \in \mathcal{C}_{EX} \) is a circuit of \(M \), then \(C' = C \); otherwise \(C' = C \cup a \) is a circuit of \(M_X^e \). Further, \(x \in C \) implies that \(x \in cl'(A \cup a) \) whereas \(a \in cl'(A') \) implies \(cl'(A \cup a) = cl'(A') \). Thus \(x \in cl'(A') \) and \(cl(A) \cup a \subseteq cl'(A') \), as desired. Second statement follows by argument similar to one as given for statement 1.

\[\square \]

Lemma 4.2.4. Let \(a, \gamma \notin A' \) and let \(A \cup e \) contains an \(OX \)-circuit but \(A \) contains no \(OX \)-circuit. Then \(cl'(A') = (cl(A) - \mathcal{F}(A)) \cup \gamma \).

Proof. Suppose \(a, \gamma \notin A' \) and \(A \cup e \) contains an \(OX \)-circuit but \(A \) contains no \(OX \)-circuit. Let \(x \in cl'(A') \). If \(x \in A' \) or \(x = \gamma \), then we are through. Suppose that \(x \in cl'(A') - A' \). Then there is a circuit \(C' \) of \(M_X^e \) such that \(x \in C' \subseteq A' \cup x \).
If $x \in E$, then by Proposition 3.1.8, C' is a circuit of M or C' is the union of two circuits C_1 and C_2, from the set C_{OX}. If C' is a circuit of M, then C' is an EX-circuit. Therefore, $x \in cl(A) - \mathcal{F}(A)$. On the other hand, if $C' = C_1 \cup C_2$, then without loss of generality assume that $x \in C_1$. Then $C_1 \cup C_2 \subseteq A \cup x$ implies that $C_2 \subseteq A$, a contradiction.

If $x = a$, then there is a circuit C' of M_X^e such that $a \in C' \subseteq A \cup a$. This implies that $C' = C \cup a$ for some $C \in C_{OX}$. Consequently, $C \subseteq A$. This is a contradiction to the fact that A contains no member of C_{OX}. Therefore, $x \neq a$.

Conversely, let $x \in cl(A) - (\mathcal{F}(A) \cup \gamma)$. If $x \in (cl(A) - A) - \mathcal{F}(A)$, then there is a circuit $C \in C_{EX}$ such that $x \in C \subseteq A \cup x = A' \cup x$. This implies $x \in cl'(A')$. If $x = \gamma$ and there is a member C of C_{OX} such that $e \in C \subseteq A \cup e$, then $C' = (C \setminus e) \cup \gamma$ is a circuit of M_X^e contained in $A \cup \gamma = A' \cup \gamma$. Therefore, $\gamma \in cl'(A')$. Thus, we conclude that $(cl(A) - \mathcal{F}(A)) \cup \gamma \subseteq cl'(A')$. This completes the proof.

Lemma 4.2.5. Let $a \notin A'$, $\gamma \in A'$, $e \notin cl(A)$ and $cl(A)$ contains an OX-circuit but A contains no OX-circuit. Then $cl'(A') = (cl(A) - \mathcal{F}(A)) \cup \gamma \cup \mathcal{T}(A)$.

Proof. Let $x \in cl'(A') - (A')$. Then there is a circuit say C' of M_X^e such that $x \in C' \subseteq A' \cup x = A \cup \{\gamma, x\}$.

If $\gamma \in C'$, then $C' \subseteq A \cup \{\gamma, x\}$ and one of the following four cases occurs.

(i) $C' = C \cup \{e, \gamma\}$ where C is a member of C_{OX} and $e \notin C$. Then $x \in C' = C \cup \{e, \gamma\} \subseteq A \cup \{\gamma, x\}$ and this implies that $x \in
(C \cup e) \subseteq A \cup x$. Consequently, $x = e \in cl(A)$ and $C \subseteq A$ but this is a contradiction.

(ii) $C' = (C \setminus e) \cup \{a, \gamma\}$ where C is a circuit of M containing e and $C \setminus e$ is a member of C_{OX}. Then $x \in C' = (C \setminus e) \cup \{a, \gamma\}$ and $C' \subseteq A \cup \{\gamma, x\}$ therefore, $(C \setminus e) \cup a \subseteq A \cup x$. Consequently, $x = a$ and $(C \setminus e) \subseteq A$. As $C \subseteq A \cup e$, it follows that C is a member of C_{EX} contained in $cl(A)$. This is a contradiction to the fact that $e \notin cl(A)$.

(iii) $C' = (C \setminus e) \cup \gamma$ where C is a circuit of M containing e and $C \in C_{OX}$. Then $x \in C' = (C \setminus e) \cup \gamma \subseteq A \cup \{\gamma, x\}$ and hence $x \in C \setminus e \subseteq A \cup x$. Thus, $x \in C \subseteq A \cup \{e, x\}$ and $x \in T(A)$ as desired.

(iv) $C' = \{a, e, \gamma\}$. Then $x \in C' = \{a, e, \gamma\} \subseteq A \cup \{\gamma, x\}$ and $x = a$ or $x = e$. In either case, we get a contradiction.

If $\gamma \notin C'$, then $C' \subseteq A \cup x$ and one of the following two cases occurs.

(i) C' is a circuit of M^e_X containing an even number of elements of X. Then $C' = C$ or $C' = C_1 \cup C_2$ where $C, C_1, C_2 \in C_{OX}$. Then by argument similar to one as in the proof of Lemma 4.2.1, we conclude that $x \in cl(A) - F(A)$.

(ii) C' is a circuit of M^e_X containing an odd number of elements of X. Then $C' = C \cup a \subseteq A \cup x$ where $C \in C_{OX}$. This implies that $x = a$ and $C \subseteq A$, a contradiction. Therefore, C' contains an even number of elements of X.
Consequently, $cl'(A) \subseteq (cl(A) - \mathcal{F}(A)) \cup \gamma \cup \mathcal{T}(A)$.

Conversely, let $x \in (cl(A) - \mathcal{F}(A)) \cup \gamma \cup \mathcal{T}(A)$. If $x \in (A \cup \gamma)$, then we are through. In the case $x \in \mathcal{T}(A)$, there is a circuit C' of M such that $x \in C' \subseteq (A \cup \{e, x\})$. Then $C' = (C \setminus e) \cup \gamma$ is a circuit of M^e_X and $x \in C' \subseteq A \cup \{\gamma, x\}$. We conclude that $x \in cl'(A \cup \gamma)$. If $x \in [(cl(A) - \mathcal{F}(A)) \cup \gamma - (A \cup \gamma)]$, then there is a circuit $C \in \mathcal{C}_{OX}$ of M such that $x \in C \subseteq A \cup x$. Thus, $C' = C$ is a circuit of M^e_X and $x \in C'$ of M^e_X contained in $A \cup \{\gamma, x\}$. This implies $x \in cl'(A')$ and we conclude that $(cl(A) - \mathcal{F}(A)) \cup \gamma \subseteq cl'(A')$. \hfill \Box

Lemma 4.2.6. Let $cl(A)$ contains no OX-circuit, $a \notin A'$, $\gamma \in A'$ and $e \notin cl(A)$. Then $cl'(A') = cl(A) \cup \gamma \cup \mathcal{T}(A)$.

Proof. Suppose $cl(A)$ contains no OX-circuit, $a \notin A'$, $\gamma \in A'$ and $e \notin cl(A)$. If $x \in A' = A \cup \gamma$, then $x \in (cl(A) \cup \gamma)$. If $x \in cl'(A') - A'$, then there is a circuit C' of M^e_X such that $x \in C'$ and $C' \subseteq A' \cup x$. If $\gamma \notin C'$, then $x \in C' \subseteq A \cup x$. This implies that $x \in cl(A)$ in M. If $\gamma \in C'$, then C' has one of the following forms.

(i) $C' = C \cup \{e, \gamma\}$ where $C \in \mathcal{C}_{OX}$ and $e \notin C$. Then $x \in C' = C' \cup \{e, \gamma\} \subseteq A \cup \{\gamma, x\}$. This implies that $C \subseteq A$ and $x = e$ which is not possible as A contains no member of \mathcal{C}_{OX}.

(ii) $C' = (C \setminus e) \cup \{a, \gamma\}$ where C is a circuit of M such that $e \in C$ and $C \setminus e$ contains an odd number of elements of X. Then $x \in C' = (C \setminus e) \cup \{a, \gamma\} \subseteq A \cup \{\gamma, x\}$ and $(C \setminus e) \cup a \subseteq A \cup x$. Therefore, $x = a$ and $(C \setminus e) \subseteq A$. Further, $C \subseteq A \cup e$ implies that $e \in cl(A)$ and this is a contradiction to the fact that $e \notin cl(A)$.

(iii) \(C' = (C \setminus e) \cup \gamma \) where \(e \in C \) and \(C \in \mathcal{C}_{OX} \) is a circuit of \(M \).

Then \(x \in C' = (C \setminus e) \cup \gamma \subseteq A \cup \{\gamma, x\} \) and this implies that
\(x \in C \setminus e \subseteq A \cup x \). That is \(x \in C \subseteq A \cup \{e, x\} \). We conclude that
\(x \in \mathcal{T}(A) \).

(iv) \(C' = \{a, e, \gamma\} \). Then \(x \in C' = \{a, e, \gamma\} \subseteq A \cup \{\gamma, x\} \) and we con-
clude that \(x = a \) or \(x = e \). In either case, we get a contradiction.

We conclude that, \(cl'(A') \subseteq cl(A) \cup \gamma \cup \mathcal{T}(A) \).

Conversely, let \(x \in cl(A) \cup \gamma \cup \mathcal{T}(A) \). If \(x = \gamma \) or \(x \in A \), then
\(x \in cl'(A \cup \gamma) \). If \(x \in cl(A) \setminus A \), then there is a circuit say \(C \) of \(M \) such that
\(x \in C \subseteq A \cup x \). As \(cl(A) \) contains no member of \(\mathcal{C}_{OX} \), \(C \in \mathcal{C}_{EX} \). Thus, \(C \) is also a circuit of \(M_X^\xi \) and \(x \in cl'(A') \). In the case \(x \in \mathcal{T}(A) \), there is a circuit \(C \) of \(M \) such that \(x \in C \subseteq A \cup \{e, x\} \). Then
\(C' = (C \setminus e) \cup \gamma \) is a circuit of \(M_X^\xi \) and \(x \in C' \subseteq A \cup \{\gamma, x\} \). We
conclude that \(x \in cl'(A \cup \gamma) = cl'(A') \).

\(\square \)

Lemma 4.2.7. Suppose one of the following conditions is true

1. \(a, \gamma \in A' \).
2. \(a \in A', \gamma \notin A' \) and \(e \in cl(A) \).
3. \(a \notin A', \gamma \in A' \) and \(A \) contains an \(OX \)-circuit.
4. \(a \notin A', \gamma \in A' \) and \(e \in cl(A) \).
5. \(a, \gamma \notin A' \), \(A \) contains an \(OX \)-circuit and \(e \in cl(A) \).

Then \(cl'(A') = cl(A) \cup \{a, \gamma\} \).
4.2 The Closure Operator of the es-Splitting Matroid

Proof. Assume that \(x \in \text{cl}'(A') - A' \). Then there is a circuit \(C' \) of \(M_X^e \) such that \(x \in C' \subseteq A' \cup x \). If \(x \in E \), then \(C' \) is a circuit of \(M \) or \(C' = C_1 \cup C_2 \), where \(C_1, C_2 \in \mathcal{C}_{OX} \). Without loss of generality, assume that \(x \in C_1 \subseteq A \cup x \). Then \(x \in \text{cl}(A) \). If \(x \in \{a, \gamma\} \), then we are through. Therefore, we conclude that \(\text{cl}'(A') \subseteq \text{cl}(A) \cup \{a, \gamma\} \).

Conversely, let \(x \in \text{cl}(A) \cup \{a, \gamma\} \). If \(x = a \), then in Case 1) and 2) \(a \in A' \).

Case 3) If \(C \) is a member of \(\mathcal{C}_{OX} \) contained in \(A \), then \(C' = C \cup a \subseteq A \cup a \) forms a circuit of \(M_X^e \). Thus, \(a \in \text{cl}'(A') \).

Case 4) If \(\gamma \in A' \) and \(e \in \text{cl}(A) \), then there is a \(EX \) or \(OX \)-circuit \(C \) containing \(e \). Then \(C' = (C \setminus e) \cup \{a, \gamma\} \) or \(C' = (C \setminus e) \cup \gamma \) are circuits of \(M_X^e \) contained in \(A' \cup a = A \cup \{a, \gamma\} \).

Case 5) If \(A \) contains an \(OX \)-circuit, then \(a \in \text{cl}'(A') \).

Now assume that \(x \in \text{cl}(A) - A \) and let \(C \) be a circuit of \(M \) such that \(x \in C \subseteq A \cup x \). If \(C \in \mathcal{C}_{EX} \), then \(C' = C \); otherwise \(C' = C \cup a \) is a circuit of \(M_X^e \). Thus, \(x \in C \) implies that \(x \in \text{cl}'(A \cup a) \). As \(a \in \text{cl}'(A') \), it follows that \(x \in \text{cl}'(A \cup a) = \text{cl}'(A') \).

If \(x = \gamma \), then in Cases 1, 3 and 4, \(\gamma \in A' \) implies \(\gamma \in \text{cl}'(A') \). In Cases 2 and 5, \(e \in \text{cl}(A) \) then one of the following two cases occurs.

(i) \(e \in C \subseteq A \cup e \) where \(C \in \mathcal{C}_{OX} \) and \(C \subseteq \text{cl}(A) \). Then \(C' = (C \setminus e) \cup \gamma \subseteq A \cup \gamma \) and we conclude that \(\gamma \in \text{cl}'(A') \).

(ii) \(e \in C \subseteq A \cup e \) where \(C \in \mathcal{C}_{EX} \) and \(C \subseteq \text{cl}(A) \). Then \(C' = ((C \setminus e) \cup \{a, \gamma\}) \subseteq A \cup \{a, \gamma\} \) and since \(a \in \text{cl}'(A') \), \(\gamma \in \text{cl}'(A \cup a) = \text{cl}'(A') \). This implies that \(\text{cl}(A) \cup \{a, \gamma\} \subseteq \text{cl}'(A') \).

\[\square \]
Thus, we proved the following theorem.

Theorem 4.2.8. Let M be a binary matroid on a set E and M_X^e be the splitting matroid of M with respect to a subset X of E where $e \in X$. Suppose $A' \subseteq E \cup \{a, \gamma\}$ and $A = A' \setminus \{a, \gamma\}$. Then $cl'(A')$ has exactly one of the following forms: $cl(A) - F(A)$, $cl(A) \cup a$, $(cl(A) - F(A)) \cup \gamma$ and $(cl(A) - F(A)) \cup \gamma \cup T(A)$, $(cl(A) \cup \gamma) \cup T(A)$, $cl(A) \cup \{a, \gamma\}$.

The proof of Theorem 4.2.8 follows from Lemmas 4.2.1, 4.2.2, 4.2.3, 4.2.4, 4.2.5, 4.2.6 and 4.2.7.

4.3 Cocircuits of the es-Splitting Matroid

Allan Mills [20] described the cocircuits of the splitting matroid $M_{x,y}$ in terms of the cocircuits of the original matroid M. In Chapter 2, we have seen that if M is an n-connected binary matroid and $|X| < n$, then X will be a cocircuit of M_X of size less than n (see [20]). Therefore, M_X can not be n-connected. Thus, before we study connectivity of es-splitting matroids it is necessary to have enough information about cocircuits of it. In this section, we characterize the cocircuits of the es-splitting binary matroid M_X^e in terms of the cocircuits of the original binary matroid M.

We assume that M is a binary matroid of rank m on a set $E = \{1, 2, 3, \cdots, n\}$ and A is a standard matrix representation of M over $GF(2)$. Let $M_X^e = M[A_X^e]$ be the es-splitting matroid of M with respect to a set $X \subseteq E$ and $e \in X$. Then the set $E' = \{1, 2, 3, \cdots n, a, \gamma\}$ is the
ground set of M_X^e. $\mathcal{R}(A_X^e)$ denotes the space spanned by the rows of A_X^e.

Given a field $F = GF(2)$ and a natural number n, the n-dimensional vector space over F is denoted by $V(n, F)$. The support of a vector $v = (v_1, v_2, v_3, \ldots, v_n)$ is $\{i \mid v_i \neq 0\}$ and is denoted by $\text{supp}(v)$. The row space of an $(m \times n)$ matrix A over the field F is denoted by $\mathcal{R}(A)$ where $\mathcal{R}(A)$ is the subspace of $V(n, F)$, spanned by the rows of A. The next lemma due to Tutte [41] relates the cocircuits of the vector matroid $M[A]$ of a matrix A to the minimal supports of vectors in $\mathcal{R}(A)$.

Lemma 4.3.1. Let A be an $m \times n$ matrix over a field F and $M = M[A]$. Then the set of cocircuits of M coincides with the set of minimal non-empty supports of vectors from the row space of A.

Recall that the matrix A_X^e is obtained from the matrix A by adjoining an extra row say δ_X to A and then adjoining two columns labelled a and γ to the resulting matrix as specified in Definition 3.1.7. Thus, we have a row vector $\delta_X' = [a_1, a_2, a_3, \ldots, a_n, a_{n+1}, a_{n+2}]_{1 \times (n+2)}$ of A_X^e with the property that $a_i = 1$ if $i \in X$ or $i = n + 1$ and is zero otherwise. For convenience, we assume that this is the last row (i.e. $(m + 1)^{th}$ row) of the matrix A_X^e. Thus, the $\text{supp}(\delta_X') = X \cup a$.

Let A' be the matrix obtained from A_X^e by deleting the $(m + 1)^{th}$ row and $\mathcal{R}(A')$ be the space spanned by row vectors of the matrix A'. Further, let $I_n' = [I_n | 0]_{n \times (n+2)}$, $\delta_a = [0, 0, 0, ... 1, 0]_{1 \times (n+2)}$, $\delta_\gamma = [0, 0, 0, ... 0, 1]_{1 \times (n+2)}$ and $'*'$ be the usual matrix multiplication.

Proposition 4.3.2. Let $u' \in \mathcal{R}(A')$. Then there is a vector $u \in \mathcal{R}(A)$
such that

\[u' = u \ast I'_n \quad \text{if } e \notin \text{supp}(u); \text{and} \]
\[u' = u \ast I'_n + \delta \quad \text{if } e \in \text{supp}(u). \]

(4.3.1)

(4.3.2)

In fact, \(u \) is a vector of size \(1 \times n \) whose co-ordinates coincide with the first \(n \) co-ordinates of \(u' \).

The next Lemma is a basic linear algebra result and its proof is straightforward.

Lemma 4.3.3. Let \(B \) be the matrix obtained from \(A \) by adjoining the row vector \(z \). Then \(R(B) = R(A) \cup \{ y + z \mid y \in R(A) \} \).

Applying Lemma 4.3.3 to the matrices \(A' \) and \(A'_X \), we obtain the following corollary.

Corollary 4.3.4. \(R(A'_X) = R(A') \cup \{ u' + \delta'_X \mid u' \in R(A') \} \).

Remark 4.3.5. If \(v' \in R(A'_X) \), then one of the following two cases occurs.

Case (I) \(v' \in R(A') \). Then in the light of Proposition 4.3.2, \(v' = v \ast I'_n \) or \(v' = v \ast I'_n + \delta \gamma \) where \(v \in R(A) \). Further,

\[\text{supp}(v') = \text{supp}(v) \cup \gamma \text{ if } e \in \text{supp}(v); \text{and} \]
\[\text{supp}(v') = \text{supp}(v) \text{ if } e \notin \text{supp}(v). \]

(4.3.3)

(4.3.4)

Case (II) \(v' \notin R(A') \). Here \(v' = u' + \delta'_X \) for some \(u' \in R(A') \). Therefore, \(\text{supp}(v') = \text{supp}(u') \Delta \text{supp}(\delta'_X) \). But \(\text{supp}(\delta'_X) = X \cup a \) and by equations (4.3.3) and (4.3.4), \(\text{supp}(u') = \text{supp}(u) \) or \(\text{supp}(u) \cup \gamma \).
Thus,

\[\text{supp}(v') = (\text{supp}(u) \cup \gamma) \Delta (X \cup a) \text{ if } e \in \text{supp}(u); \text{and} \]

\[\text{supp}(v') = \text{supp}(u) \Delta (X \cup a) \text{ if } e \notin \text{supp}(u) \] (4.3.5)

(4.3.6)

From equations (4.3.6) and (4.3.5), we observe that, if \(v' = u' + \delta_X \) for some \(u' \in \mathcal{R}(A') \) then \(a \in \text{supp}(v') \).

We illustrate the above discussion with the help of an example.

Example 4.3.6. Consider the Fano matroid mentioned in Example 1.2.25.

The Fano matroid \(F_7 \) is a connected matroid. Consider the following representation of \(F_7 \) over \(GF(2) \).

\[
A = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{pmatrix}
\]

The matrix \(A \) has three row vectors, \(u_1 = [1, 0, 0, 1, 0, 1, 1] \), \(u_2 = [0, 1, 0, 1, 1, 0, 1] \), and \(u_3 = [0, 0, 1, 0, 1, 1, 1] \). \(\mathcal{R}(A) = \{0, u_1, u_2, u_3, u_1 + u_2, u_1 + u_3, u_2 + u_3, u_1 + u_2 + u_3\} \). We denote by \(\mathcal{S}(A) \) the collection of non empty supports of vectors in \(\mathcal{R}(A) \). One can check that \(\mathcal{S}(A) = \{\{1, 4, 6, 7\}, \{2, 4, 5, 7\}, \{3, 5, 6, 7\}, \{1, 2, 5, 6\}, \{1, 3, 4, 5\}, \{2, 3, 4, 6\}, \{1, 2, 3, 7\}\} \). Further, each of these sets is minimal in the collection of non empty supports of vectors in \(\mathcal{R}(A) \). Thus, in view of Lemma 4.3.1, the set of all cocircuits of \(F_7 \) is given by
Let $X = \{1, 2, 3\}$ and $e = 1$. The representation of es-splitting matroid $(F_7)^c_X$ over $GF(2)$ is given by the matrix A_X^c where

$$A_X^c = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & a & \gamma \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 0
\end{pmatrix}.$$

The set $E' = \{1, 2, 3, 4, 5, 6, 7, a, \gamma\}$ is a ground set of the es-splitting matroid $(F_7)^c_X$. Note that $\delta_X' = [1, 1, 1, 0, 0, 0, 1, 0]$ is the row vector corresponding to the 4th row of A_X^c and the $supp(\delta_X') = \{1, 2, 3, a\}$.

Let A' be the matrix obtained from A_X^c by deleting the 4th row and $\mathcal{R}(A')$ be the space spanned by row vectors of A'. Here $I_7' = [I_7 | 0]_{7 \times 9}$, $\delta_a' = [0, 0, 0, 0, 0, 0, 0, 1, 0]$ and $'*'$ is a usual matrix multiplication. Then for every $u' \in \mathcal{R}(A')$ there is a vector $u \in \mathcal{R}(A)$ such that $u' = u \cdot I_7'$ if 1 $\not\in supp(u)$ and $u' = u \cdot I_n' + \delta$ if 1 $\in supp(u)$. The vectors $u_1' = [1, 0, 0, 1, 0, 1, 1, 0, 1]$, $u_2' = [0, 1, 0, 1, 0, 1, 0, 1, 0]$ and $u_3' = [0, 0, 1, 0, 1, 1, 1, 0, 0]$ are the row vectors of A'. Thus, $\mathcal{R}(A') = \{0, u_1', u_2', u_3', u_1' + u_2', u_1' + u_3', u_2' + u_3', u_1' + u_2' + u_3'\}$ and $\mathcal{S}(A') = \{\{1, 4, 6, 7, \gamma\}, \{2, 4, 5, 7\}, \{3, 5, 6, 7\}, \{1, 2, 5, 6, \gamma\}, \{1, 3, 4, 5, \gamma\}, \{2, 3, 4, 6\}, \{1, 2, 3, 7, \gamma\}\}$. Applying Lemma 4.3.3 to A and A_X^c, we have
4.3 Cocircuits of the es-Splitting Matroid

\(\mathcal{R}(A^e_X) = \mathcal{R}(A') \cup \{u' + \delta'_{X} \mid u' \in \mathcal{R}(A')\}\).

Thus, \(\mathcal{S}(A^e_X) = \{\{1, 4, 6, 7, \gamma\}, \{2, 4, 5, 7\}, \{3, 5, 6, 7\}, \{1, 2, 5, 6, \gamma\}, \{1, 3, 4, 5, \gamma\}, \{2, 3, 4, 6\}, \{1, 2, 3, 7, \gamma\}\} \cup \{\{1, 2, 3, a\}, \{2, 3, 4, 6, 7, a, \gamma\}, \{1, 3, 4, 5, 7, a\}, \{1, 2, 5, 6, 7, a\}, \{3, 5, 6, a, \gamma\}, \{2, 4, 5, a, \gamma\}, \{1, 4, 6, a\}, \{7, a, \gamma\}\}\).

Consequently, the set of all cocircuits of \((F_7)^e_X\) is
\(\mathcal{C}^*(F_7)^e_X = \{\{1, 4, 6, 7, \gamma\}, \{2, 4, 5, 7\}, \{3, 5, 6, 7\}, \{1, 2, 5, 6, \gamma\}, \{1, 3, 4, 5, \gamma\}, \{2, 3, 4, 6\}, \{1, 2, 3, 7, \gamma\}\} \cup \{\{1, 2, 3, a\}, \{1, 3, 4, 5, 7, a\}, \{1, 2, 5, 6, 7, a\}, \{3, 5, 6, a, \gamma\}, \{2, 4, 5, a, \gamma\}, \{1, 4, 6, a\}, \{7, a, \gamma\}\}\).

In order to describe the cocircuits of the es-splitting binary matroid \(M^e_X\) in terms of the cocircuits of the original binary matroid \(M\), first, we prove a few lemmas which will be used in the proof of the main theorem.

In the following discussion, \(\text{supp}(u)\) is minimal with respect to \(\mathcal{R}(A)\) means \(\text{supp}(u)\) is minimal in the collection of non empty supports of vectors in \(\mathcal{R}(A)\).

In the next lemma, we prove that, if \(\text{supp}(u')\) is minimal with respect to \(\mathcal{R}(A')\), then the support of the corresponding vector \(u\) is minimal with respect to \(\mathcal{R}(A)\).

Lemma 4.3.7. Let \(u' \in \mathcal{R}(A')\) and \(u' = u \ast I'_n + \delta_\gamma\) where \(u \in \mathcal{R}(A)\). Then \(\text{supp}(u')\) is minimal with respect to \(\mathcal{R}(A')\) if and only if \(\text{supp}(u)\) is minimal with respect to \(\mathcal{R}(A)\).

Proof. Suppose \(\text{supp}(u')\) is minimal with respect to \(\mathcal{R}(A')\) and \(\text{supp}(u)\) is not minimal with respect to \(\mathcal{R}(A)\). Then there is a vector \(v \in \mathcal{R}(A)\) such that \(\text{supp}(v) \subset \text{supp}(u)\). Let \(v' = v \ast I'_n + \delta_\gamma\) if \(e \in \text{supp}(v)\);
otherwise $v' = v$. Then $v' \in \mathcal{R}(A')$ and $supp(v') \subset supp(u')$, a contradiction. Converse of the statement in the Lemma follows by similar argument.

For convenience, we use the following notation.

Notation: $T_0 = \{supp(u) | u \in \mathcal{R}(A) \wedge supp(u) \subset X\}$.

Lemma 4.3.8. Let $v' = u' + \delta_X'$ be the element of $\mathcal{R}(A_X^c)$ where $u' \in \mathcal{R}(A')$. Suppose that $u' = u * I'_n + \delta_\gamma$ where $u \in \mathcal{R}(A)$, $supp(u) \subset X$ and $e \in supp(u)$. If $supp(v')$ is minimal with respect to $\mathcal{R}(A_X^c)$, then $supp(u)$ is maximal in T_0.

Proof. Let $v' = u' + \delta_X' \in \mathcal{R}(A_X^c)$ where $u' \in \mathcal{R}(A')$ and $supp(v')$ is minimal with respect to $\mathcal{R}(A_X^c)$. Since $e \in supp(u)$, we have $u' = u * I'_n + \delta_\gamma \in \mathcal{R}(A')$. So, by equation (4.3.5), $supp(v') = (supp(u) \Delta X) \cup \{a, \gamma\} = (X - supp(u)) \cup \{a, \gamma\}$. We show that $supp(u)$ is maximal in T_0. On the contrary, suppose that there is a vector $w \in \mathcal{R}(A)$ such that $supp(u) \subset supp(w) \subset X$. As $e \in supp(u) \subset supp(w)$, $w' = w * I'_n + \delta_\gamma'$ is an element of $\mathcal{R}(A')$. Further, the vector $p' = w' + \delta_X' \in \mathcal{R}(A_X^c)$ and $supp(p') = (supp(w) \Delta X) \cup \{a, \gamma\} \subset supp(v')$. This is a contradiction to the minimality of $supp(v')$ with respect to $\mathcal{R}(A_X^c)$. We conclude that, $supp(u)$ is maximal in T_0.

The following lemma establishes a natural relation between the cocircuits of M and the cocircuit of M_X^c.

Lemma 4.3.9. Let C^* be a cocircuit of a matroid M. Then C^* or $C^* \cup \gamma$ is a cocircuit of M_X^c.
Proof. Let C^* be a cocircuit of M. By definition C^* is minimal with respect to $R(A)$. Let $C^* = \text{supp}(u)$ for some vector $u \in R(A)$. Then $u' = u*I_n' + \delta'_\gamma$ if $e \in \text{supp}(u)$ and $u' = u*I_n'$ if $e \notin \text{supp}(u)$ is a vector in $R(A')$. Further, by equations (4.3.3) and (4.3.4), $\text{supp}(u') = \text{supp}(u) \cup \gamma$ if $e \in \text{supp}(u)$; otherwise $\text{supp}(u') = \text{supp}(u)$. Thus, $\text{supp}(u') = C^*$ or $C^* \cup \gamma$ and, by Lemma 4.3.7, $\text{supp}(u')$ is minimal with respect to $R(A_X')$. Now it is enough to show that $\text{supp}(u')$ is minimal with respect to $R(A_X^e)$.

On the contrary, suppose $\text{supp}(u')$ is not minimal with respect to $R(A_X^e)$. Then there is a vector $v' \in R(A_X^e)$ such that $v' \notin R(A')$ and $\text{supp}(v') \subset \text{supp}(u')$. Further, $\text{supp}(v')$ is minimal with respect to $R(A_X^e)$. Now, $v' = w' + \delta'_X$ for some $w' \in R(A')$ and $a \in \text{supp}(v') \subset \text{supp}(u')$; a contradiction. Thus, C^* or $C^* \cup \gamma$ is a cocircuit of M_X^e. \square

In fact, one can observe that if C^* is a cocircuit of M and $e \notin C^*$, then C^* is a cocircuit of M_X^e; otherwise $C^* \cup \gamma$ is a cocircuit of M_X^e. For convenience, we use the following notations.

$$C_1^* = \{C^* \mid C^* \in C^*(M) \text{ and } e \notin C^*\}; \text{ and}$$

$$C_2^* = \{C^* \cup \gamma \mid C^* \in C^*(M) \text{ and } e \in C^*\}.$$

Thus, C_1^* and C_2^* are collections of cocircuits of M_X^e. In Example 4.3.6, we observe that if $X = \{1, 2, 3\}$ and $e = 1$, then the members of the following collections are cocircuits of $(F^e)_X$.

$$C_1^* = \{\{2, 4, 5, 7\}, \{3, 5, 6, 7\}, \{2, 3, 4, 6\}\}; \text{ and}$$

$$C_2^* = \{\{1, 4, 6, 7, \gamma\}, \{1, 2, 5, 6, \gamma\}, \{1, 3, 4, 5, \gamma\}, \{1, 2, 3, 7, \gamma\}\}.$$
In the following result, we give a sufficient condition so that the set \(X \cup a \) is a cocircuit of \(M^e_X \).

Lemma 4.3.10. If \(X \) is a cocircuit of \(M \) or contains no member of \(C^*_1 \), then \(X \cup a \) is a cocircuit of \(M^e_X \).

Proof. Assume that \(X \) is a cocircuit of \(M \) or contains no member of \(C^*_1 \). Suppose \(\text{supp}(\delta'_X) = X \cup a \) is not a cocircuit of \(M^e_X \). Then there is a vector \(v' \in R(A^e_X) \) such that \(\text{supp}(v') \subset \text{supp}(\delta'_X) \) and \(\text{supp}(v') \) is minimal with respect to \(R(A^e_X) \). Now one of the following two cases occurs.

Case (I) \(v' = u' \) where \(u' \in R(A') \). By equations (4.3.1) and (4.3.2), \(u' = u*I'_n + \delta \gamma \) or \(u' = u*I'_n \) for some \(u \in R(A) \). Therefore, by equations (4.3.3) and (4.3.4), \(\text{supp}(v') = \text{supp}(u') = \text{supp}(u) \) or \(\text{supp}(u) \cup \gamma \). Now \(\gamma \notin (X \cup a) \) and \(\text{supp}(v') \subset \text{supp}(\delta'_X) \) implies that \(\text{supp}(u') = \text{supp}(u) \subset X \). Thus, \(\text{supp}(v') = \text{supp}(u) \) is minimal with respect to \(R(A^e_X), R(A') \) and \(R(A) \). Consequently, \(\text{supp}(u) \) is a cocircuit of \(M \) and \(e \notin \text{supp}(u) \); a contradiction to the assumption that \(X \) contains no member of \(C^*_1 \).

Case (II) \(v' = u' + \delta'_X \) where \(u' \in R(A') \). Then, by equations (4.3.6) and (4.3.5), \(\text{supp}(v') = (\text{supp}(u) \Delta X) \cup a \) or \((\text{supp}(u) \Delta X) \cup \{a, \gamma\} \).

Now \(\text{supp}(v') \subset \text{supp}(\delta'_X) = X \cup a \) implies that \(\text{supp}(u) \subset X \) and \(e \notin \text{supp}(u) \). If \(\text{supp}(u) \) is minimal with respect to \(R(A) \), then we get a contradiction. If \(\text{supp}(u) \) is not minimal with respect to \(R(A) \), then there is a vector \(w \in R(A) \) such that \(\text{supp}(w) \subset \text{supp}(u) \) and \(\text{supp}(w) \) is minimal with respect to \(R(A) \); a contradiction. Therefore, \(\text{supp}(\delta'_X) \) is minimal with respect to \(R(A^e_X) \). Thus, \(X \cup a \) is a cocircuit of \(M^e_X \). \(\square \)
We use the following notations in the next results. For $u \in \mathcal{R}(A)$,
\[F_1(\text{supp}(u)) = \{ w \mid w \in \mathcal{R}(A), e \in \text{supp}(w), (\text{supp}(w) - X) \subset (\text{supp}(u) - X) \text{ and } (\text{supp}(u) \cap X) \subset (\text{supp}(w) \cap X) \}; \]
\[F_2(\text{supp}(u)) = \{ w \mid w \in \mathcal{R}(A), e \notin \text{supp}(w), (\text{supp}(w) - X) \subset (\text{supp}(u) - X) \text{ and } (\text{supp}(u) \cap X) \subset (\text{supp}(w) \cap X) \}; \]
\[D^* = \{ D^* = C_1^* \cup C_2^* \cup \ldots \cup C_k^* \mid C_i^* \in \mathcal{C}^*(M), C_i^* \cap X \neq \emptyset (i = 1, 2, \ldots k) \text{ and } C_i^* \cap C_j^* = \emptyset \text{ for } i, j \in \{1, 2, \ldots k\} \}. \]

The following result describes the cocircuits of M_X^c which arise from the cocircuits of M.

Lemma 4.3.11. Let M be a binary matroid and let $X \subset E(M)$. Then the members of the following collections are cocircuits of M_X^c.

\[C_3^* = \{ (C^* \Delta X) \cup \{a, \gamma\} \mid C^* \in \mathcal{C}^*(M), e \in C^*, C^* \cap X \neq \emptyset, \mathcal{F}_1(C^*) = \emptyset \text{ and } (C^* \Delta X) \cup \{a, \gamma\} \text{ contains no member of } C_1^* \text{ or } C_2^* \}; \]
\[C_4^* = \{ (C^* \Delta X) \cup a \mid C^* \in \mathcal{C}^*(M), e \notin C^*, C^* \cap X \neq \emptyset, \mathcal{F}_2(C^*) = \emptyset \text{ and } (C^* \Delta X) \cup a \text{ contains no member of } C_1^* \}; \]

Proof. Let $C^* \in \mathcal{C}^*(M), e \in C^*, X_1 = C^* \cap X, X_2 = X - X_1, \mathcal{F}_1(C^*) = \emptyset \text{ and } (C^* \Delta X) \cup \{a, \gamma\} \text{ contains no member of } C_1^* \text{ and } C_2^*$. We prove that $(C^* \Delta X) \cup \{a, \gamma\}$ is a cocircuit of M_X^c. Let $C^* = \text{supp}(u)$ for some vector $u \in \mathcal{R}(A)$ and $\text{supp}(u)$ is minimal with respect to $\mathcal{R}(A)$. Then, by equation (4.3.2), $u' = u \ast I_n' + \delta_\gamma$ is a vector in $\mathcal{R}(A')$ and $\text{supp}(u') = C^* \cup \gamma$. Let $v' = u' + \delta_X'$. Then $\text{supp}(v') = (C^* \Delta X) \cup \{a, \gamma\}$. Suppose $\text{supp}(v')$ is not minimal with respect to $\mathcal{R}(A_X^c)$. Then there
exists a vector \(w' \in \mathcal{R}(A_X^e) \) such that \(\text{supp}(w') \subseteq \text{supp}(v') \) and \(\text{supp}(w') \) is minimal with respect to \(\mathcal{R}(A_X^e) \). Now there are two possibilities: \(w' \in \mathcal{R}(A') \) or \(w' = p' + \delta_X \) where \(p' \in \mathcal{R}(A') \).

If \(w' \in \mathcal{R}(A') \), then \(w' = w * I_n' + \delta \gamma \) or \(w' = w * I_n' \) for some \(w \in \mathcal{R}(A) \) and \(\text{supp}(w') \) is minimal with respect to \(\mathcal{R}(A') \). Therefore, \(\text{supp}(w') = \text{supp}(w) \cup \gamma \) or \(\text{supp}(w) \) and, by Lemma 4.3.7, \(\text{supp}(w) \) is minimal with respect to \(\mathcal{R}(A) \). Consequently, \(\text{supp}(w') \subset \text{supp}(v') = (C^* \Delta X) \cup \{a, \gamma\} \) implies that \(\text{supp}(w) \subset (C^* \Delta X) \); a contradiction.

Now if \(w' = p' + \delta_X \) where \(p' \in \mathcal{R}(A') \), then \(\text{supp}(w') = (Y - X_3) \cup X_4 \cup \{a, \gamma\} \) where \(Y = \text{supp}(p) \), \(X_3 = Y \cap X \), \(X_4 = X - X_3 \). We have, \(\text{supp}(w') = (C^* - X) \cup X_2 \cup \{a, \gamma\} \). So that \(\text{supp}(w') \subset \text{supp}(v') \) implies that \(\text{supp}(p) - X = (Y - X_3) \subset (C^* - X) \) and \(X_4 \subset X_2 \). This implies that \(X_1 \subset X_3 \) and \(p \in \mathcal{F}_1(C^*) \); a contradiction. We conclude that \(\text{supp}(v') \) is minimal with respect to \(\mathcal{R}(A_X^e) \). Consequently, every member of the collection \(\mathcal{C}_X^* \) is a cocircuit of \(M_X^e \).

Let \(C^* \in C^*(M) \), \(e \notin C^* \), \(X_1 = C^* \cap X \), \(X_2 = X - X_1 \), \(\mathcal{F}_2(C^*) = \phi \) and \((C^* \Delta X) \cup a \) contains no member of \(\mathcal{C}_1^* \) or \(\mathcal{C}_2^* \). We show that \((C^* \Delta X) \cup a \) is a cocircuit of \(M_X^e \). Let \(C^* = \text{supp}(u) \) for some vector \(u \in \mathcal{R}(A) \) and \(\text{supp}(u) \) is minimal with respect to \(\mathcal{R}(A) \). Then, by equation (4.3.1), \(u' = u * I_n' \) is a vector in \(\mathcal{R}(A') \) and \(\text{supp}(u') = C^* \). Let \(v' = u' + \delta_X \). Then \(\text{supp}(v') = (C^* \Delta X) \cup a \). Now, by the argument similar to one as given above, we can show that \(\text{supp}(v') \) is minimal with respect to \(\mathcal{R}(A_X^e) \). This proves that every member of the collection \(\mathcal{C}_4^* \) is a cocircuit of \(M_X^e \).

The following example illustrates the above Lemma.
Example 4.3.12. Consider the Fano matroid F_7 mentioned in Example 4.3.6. If $X = \{1, 2, 3\}$ and $e = 1$, then $X \cup a = \{1, 2, 3, a\}$ and the members of the following collections are cocircuits of $(F_7)^e_X$.

\[C_1^* = \{2, 4, 5, 7\}, \{3, 5, 6, 7\}, \{2, 3, 4, 6\} \];
\[C_2^* = \{\{1, 4, 6, 7, \gamma\}, \{1, 2, 5, 6, \gamma\}, \{1, 3, 4, 5, \gamma\}, \{1, 2, 3, 7, \gamma\}\}; \]
\[C_3^* = \{\{7, a, \gamma\}, \{3, 5, 6, a, \gamma\}, \{2, 4, 5, a, \gamma\}\}; \]
\[C_4^* = \{\{1, 3, 4, 5, 7, a\}, \{1, 2, 5, 6, 7, a\}, \{1, 2, 4, 6, a\}\}. \]

In the following result, we describe the cocircuits of M_X^e which arise from the disjoint unions of cocircuits of M.

Lemma 4.3.13. Let $D^*(M)$ be the set of all disjoint unions of cocircuits of the matroid M and let $X \subset E(M)$. Then the members of the following collections are cocircuits of M_X^e.

\[C_5^* = \{(D^* \Delta X) \cup \{a, \gamma\} \mid e \in D^*, F_1(D^*) = \phi \text{ and } (D^* \Delta X) \cup \{a, \gamma\} \text{ contains no member of } C_1^* \text{ or } C_2^*\}; \]
\[C_6^* = \{(D^* \Delta X) \cup a \mid e \notin D^*, F_1(D^*) = \phi \text{ and } (D^* \Delta X) \cup a \text{ contains no member of } C_1^* \text{ or } C_2^*\}. \]

Proof. Suppose that $D^* \in D^*$, $e \in D^*$, $F_1(D^*) = \phi$ and $(D^* \Delta X) \cup \{a, \gamma\}$ contains no member of C_1^* or C_2^*. Then for each $C_i^* \in D^*$, $C_i^* = \text{supp}(u_i)$ where $u_i \in \mathcal{R}(A)$ is minimal with respect to $\mathcal{R}(A)$ for $i = 1, 2, ..., k$. Let $u = u_1 + u_2 + u_3 + ... + u_k$. Then $e \in \text{supp}(u)$ and $u' = u * I_n' + \delta$ is a vector in $\mathcal{R}(A')$. Further, $\text{supp}(u') = D^* \cup \gamma$ or D^*. Let $v' = u' + \delta_X'$. Therefore, $\text{supp}(v') = (D^* \Delta X) \cup \{a, \gamma\}$.
We show that \(\text{supp}(v') \) is minimal with respect to \(\mathcal{R}(A_{X}^{c}) \). On the contrary suppose there is a vector \(w' \in \mathcal{R}(A_{X}^{c}) \) such that \(\text{supp}(w') \subset \text{supp}(v') \) and \(\text{supp}(w') \) is minimal with respect to \(\mathcal{R}(A_{X}^{c}) \). There are two possibilities: \(w' \in \mathcal{R}(A') \) or \(w' = p' + \delta_{X} \) where \(p' \in \mathcal{R}(A') \).

If \(w' \in \mathcal{R}(A') \), then \(w' = w * I_{n}' + \delta_{Y} \) for some \(w \in \mathcal{R}(A) \) and \(\text{supp}(w') = \text{supp}(w) \cup \gamma \) is minimal with respect to \(\mathcal{R}(A') \). Now, by Lemma 4.3.7, \(\text{supp}(w) \) is minimal with respect to \(\mathcal{R}(A) \). Further, \(\text{supp}(w') \subset \text{supp}(v') \) implies that \(\text{supp}(w) \subset (D^{*} \Delta X) \), a contradiction.

Now if \(w' = p' + \delta_{X} \) where \(p' \in \mathcal{R}(A') \), then \(\text{supp}(w') = (Y - X_{3}) \cup X_{4} \cup \{a, \gamma\} \) where \(Y = \text{supp}(p), X_{3} \subset X, X_{4} = X - X_{3} \). Note that \(\text{supp}(v') = (D^{*} - X) \cup X_{2} \cup \{a, \gamma\} \) where \(X_{1} = D^{*} \cap X \) and \(X_{2} = X - X_{1} \). Now, \(\text{supp}(w') \subset \text{supp}(v') \) implies that \(\text{supp}(p) - X = (Y - X_{3}) \subset (D^{*} - X) \) and \(X_{4} \subset X_{2} \). Consequently, \(X_{1} \subset X_{3} \) and \(p \in \mathcal{F}_{1}(D^{*}) \). This is a contradiction. Therefore, \(\text{supp}(v') \) is minimal with respect to \(\mathcal{R}(A_{X}^{c}) \). This proves that every member of the collection \(C_{5}^{*} \) is a cocircuit of \(M_{X}^{c} \).

Let \(D^{*} \in D^{*}, e \notin D^{*} \), \(\mathcal{F}_{2}(C^{*}) = \phi \) and the set \((D^{*} \Delta X) \cup a \) contains no member of \(C_{1}^{*} \) and \(C_{2}^{*} \). Then for each \(C_{i}^{*} \in D^{*}, C_{i}^{*} = \text{supp}(u_{i}) \) where \(u_{i} \in \mathcal{R}(A) \) is minimal with respect to \(\mathcal{R}(A) \) for \(i = 1, 2, \cdots, k \). Let \(u = u_{1} + u_{2} + u_{3} + \cdots + u_{k} \) then \(e \notin \text{supp}(u) \) and \(u' = u * I_{n}' \) is a vector in \(\mathcal{R}(A') \). Further, \(\text{supp}(u') = D^{*} \). Let \(v' = u' + \delta_{X}' \). Then \(\text{supp}(v') = (D^{*} \Delta X) \cup a \). Now, by arguments similar to one as above, we can show that \(\text{supp}(v') \) is minimal with respect to \(\mathcal{R}(A_{X}^{c}) \). Thus, every member of the collection \(C_{6}^{*} \) is a cocircuit of \(M_{X}^{c} \). \(\Box \)

Lemmas 4.3.9, 4.3.10, 4.3.11 and 4.3.13 provide collections of the
cocircuits of the matroid M^e_X for different types of X. Conversely, one can prove that if $C^{*'}$ is a cocircuit of M^e_X, then it is a member of one of these collections. Consequently, the following Theorem characterizes the cocircuits of the matroid M^e_X.

Theorem 4.3.14. A subset $C^{*'}$ of $E(M^e_X)$ is a cocircuit of M^e_X if and only if it is either $X \cup a$ or a member of one of the collections $C^*_1, C^*_2, C^*_3, C^*_4, C^*_5$ and C^*_6.

Proof. If $C^{*'}$ is a cocircuit of M^e_X, then there is a vector $v' \in R(A^e_X)$ such that $\text{supp}(v') = C^{*'}$. Now, by Proposition 4.3.4, $v' \in R(A')$ or $u' + \delta'_X$, where $u' \in R(A')$ and $\text{supp}(v')$ is minimal with respect to $R(A^e_X)$.

Case (I) $v' \in R(A')$. By equations (4.3.3) and (4.3.4), we have $\text{supp}(v') = \text{supp}(v)$ or $\text{supp}(v) \cup \gamma$ for some $v \in R(A)$. By Lemma 4.3.7, $\text{supp}(v)$ is minimal with respect to $R(A)$. Thus, $\text{supp}(v) = C^*$ for some $C^* \in C^*(M)$ and $\text{supp}(v') = C^{*'} = C^*$ or $C^* \cup \gamma$. Thus, $C^{*'} \in C^*_1$ or C^*_2.

Case (II) $v' = u' + \delta'_X$. Then $\text{supp}(v') = \text{supp}(u') \Delta \text{supp}(\delta'_X)$. One of the following two sub-cases occurs.

Subcase (i) $e \notin \text{supp}(u')$. By equation (4.3.1), $\text{supp}(u') = \text{supp}(u)$ for some $u \in R(A)$ and $\text{supp}(v') = (\text{supp}(u) \Delta X) \cup a$. If $\text{supp}(u) = \phi$, then $C^{*'} = \text{supp}(v') = X \cup a$.

If $\text{supp}(u)$ is minimal with respect to $R(A)$, then $\text{supp}(u) = C^*$ for some $C^* \in C^*(M)$. Consequently, if $C^* \subset X$, then $C^{*'} = \text{supp}(v') = (X - C^*) \cup a$; otherwise $C^{*'} = \text{supp}(v') = (C^* \Delta X) \cup a$. In either case, $C^{*'}$ is a member of C^*_4.
If \(\text{supp}(u) \) is not minimal with respect to \(\mathcal{R}(A) \), then it is a disjoint union of cocircuits of \(M \). So, let \(\text{supp}(u) = D^* \). If \(D^* \subset X \), then \(C^* = \text{supp}(v^*) = (X - D^*) \cup \{a\} \); otherwise \(C^* = \text{supp}(v^*) = (D^* \Delta X) \cup \{a\} \). In both cases \(C^* \) is a member of \(C_6^* \).

Subcase (ii) \(e \in \text{supp}(u^*) \). Then, by equation (4.3.2), \(\text{supp}(u^*) = \text{supp}(u) \cup \gamma \) for some \(u \in \mathcal{R}(A) \) and \(\text{supp}(v^*) = (\text{supp}(u) \Delta X) \cup \{a, \gamma\} \). If \(\text{supp}(u) = C^* \) for some \(C^* \in C^*(M) \), then \(C^* = \text{supp}(v^*) = (C^* \Delta X) \cup \{a, \gamma\} \) is a member of \(C_3^* \). In particular, if \(C^* = X \), then \(C^* = \text{supp}(v^*) = \{a, \gamma\} \).

If \(\text{supp}(u) \) is not minimal with respect to \(\mathcal{R}(A) \), then it is a disjoint union of cocircuits of \(M \). So, let \(\text{supp}(u) = D^* \). If \(D^* \subset X \), then \(C^* = \text{supp}(v^*) = (X - D^*) \cup \{a, \gamma\} \); otherwise \(C^* = \text{supp}(v^*) = (D^* \Delta X) \cup \{a, \gamma\} \). Thus, in either case \(C^* \) is a member of \(C_5^* \). This completes the proof of the theorem.

\[\square \]

The type of collection of cocircuits of \(M_X^* \) depends on the nature of the set \(X \). We consider the following three cases concerning the set \(X \).

1. \(X \) contains no cocircuit of \(M \);
2. \(X \) is a disjoint union of cocircuits of \(M \); and
3. \(X \) is not a disjoint union of cocircuits of \(M \) but contains a disjoint union of cocircuits of \(M \).

At a time only one of the three cases arises, so the set of cocircuits of \(M_X^* \) can be completely described with the help of Lemmas 4.3.9, 4.3.10, 4.3.11, 4.3.13 and Theorem 4.3.14.
In fact, the following corollary describes the set of cocircuits of M_X^c when X contains no cocircuit of M.

Corollary 4.3.15. If X contains no cocircuit of M, then the set of cocircuits of M_X^c consists of $X \cup a$ and the members of the collections $C_1^c, C_2^c, C_3^c, C_4^c, C_5^c$ and C_6^c.

The set of all cocircuits of M_X^c when X is a disjoint union of cocircuits of M is described in the next result.

Corollary 4.3.16. Let X be a disjoint union of cocircuits of M. Then $\{a, \gamma\}$ and the members of the collections C_1^c, C_2^c, C_4^c and C_6^c are cocircuits of M_X^c. Further, if X is a cocircuit of M, then $X \cup a$ is a cocircuit of M_X^c.

Proof. Suppose X is disjoint union of cocircuits $C_1^c, C_2^c, \ldots, C_k^c$ of M. Then, by Lemma 4.3.9, C_i^c or $C_i^c \cup \gamma$ is a cocircuit of M_X^c and then there are vectors $u_i' \in \mathcal{R}(A')$, $(i = 1, 2, \ldots, k)$ such that $\text{supp}(u_i') = C_i^c$ or $C_i^c \cup \gamma$. Now, $u = u_1 + u_2 + u_3 + \cdots + u_k$, $e \notin \text{supp}(u)$ and $u' = u * I_n'$ is a vector in $\mathcal{R}(A')$. Further, $\text{supp}(u') = X \cup \gamma$. Let $v' = u' + \delta_X'$. Then $\text{supp}(v') = (X \cup \gamma) \Delta (X \cup a) = \{a, \gamma\}$. One can verify that the set $\{a, \gamma\}$ is minimal with respect to $\mathcal{R}(A_X^c)$. We conclude that $\{a, \gamma\}$ is a cocircuit of M_X^c. Therefore, $C_3^c \cup C_5^c = \{a, \gamma\}$ and, by Lemmas 4.3.9, 4.3.11 and 4.3.13, the members of the collections C_1^c, C_2^c, C_4^c and C_6^c are cocircuits of M_X^c.

Further, if X is a cocircuit of M, then, by Lemma 4.3.10, the set $X \cup a$ is a cocircuit of M_X^c. This completes the proof. \square

If X is not a disjoint union of cocircuits of M but contains disjoint
union of cocircuits of \(M \), then the cocircuits of \(M_X^c \) are described by the following result.

Corollary 4.3.17. Suppose \(X \) contains a disjoint union of cocircuits of \(M \). Then the members of the collections \(C_1^*, \ C_2^*, \ C_3^*, \ C_4^*, \ C_5^* \) and \(C_6^* \) are cocircuits of \(M_X^c \). Further, if \(X \) contains no member of \(C_1^* \), then in addition to the above collection, the set \(X \cup a \) is a cocircuit of \(M_X^c \).

With the help of the following example, we describe the cocircuits of \(M_X^c \) when \(X \) is a disjoint union of cocircuits of \(M \).

Example 4.3.18. Let \(G = K_{2,3} \) be the complete bipartite graph and \(M = M(G) \) be the cycle matroid of \(G \). Thus, \(E(M) = \{1, 2, 3, 4, 5, 6\} \) and the matrix \(A \) represents \(M \) over \(GF(2) \).

![Figure 1](image)

\[
A = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{pmatrix}.
\]

Here, \(C^*(M) = \{\{2,5\}, \{3,6\}, \{4,5,6\}, \{2,4,6\}, \{3,4,5\}, \{2,3,4\}, \{1,5,6\}, \{1,2,6\}, \{1,3,5\}, \{1,4\}, \{1,2,3\}\} \).
Let $X = \{1, 2, 4, 5\} \subset E(M)$. Then

\[
A^e_X = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & a & \gamma \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0
\end{pmatrix}.
\]

The set $E' = \{1, 2, 3, 4, 5, 6, a, \gamma\}$ is the ground set of the es-splitting matroid M^e_X. Note that $\delta'_X = [1, 1, 0, 1, 1, 0, 1, 0]$ is a row vector corresponding to the 5th row of A^e_X and $supp(\delta'_X) = \{1, 2, 4, 5, a\}$.

The set $\{a, \gamma\}$ and the members of the following collections are cocircuits of M^e_X.

- $C^*_1 = \{\{2, 5\}, \{3, 6\}, \{4, 5, 6\}, \{2, 4, 6\}, \{3, 4, 5\}, \{2, 3, 4\}\};$
- $C^*_2 = \{\{1, 5, 6, \gamma\}, \{1, 2, 6, \gamma\}, \{1, 3, 5, \gamma\}, \{1, 4, \gamma\}, \{1, 2, 3, \gamma\}\};$ and
- $C^*_4 = \{\{1, 2, 6, a\}, \{1, 5, 6, a\}, \{1, 2, 3, a\}, \{1, 3, 5, a\}, \{1, 4, a\}\}.$

The following example illustrates the Corollary 4.3.17.

Example 4.3.19. Let $G = K_{2,3}$ be the complete bipartite graph, $M = M(G)$ be the cycle matroid of G and $E(M) = \{1, 2, 3, 4, 5, 6\}$.

\[C^*(M) = \{\{2, 5\}, \{3, 6\}, \{4, 5, 6\}, \{2, 4, 6\}, \{3, 4, 5\}, \{2, 3, 4\}, \{1, 5, 6, \gamma\}, \{1, 2, 6, \gamma\}, \{1, 3, 5, \gamma\}, \{1, 4, \gamma\}, \{1, 2, 3, \gamma\}\}.
\]

Let $X = \{1, 2, 3, 4, 5\} \subset E(M)$. Then the representation of the es-splitting matroid M^e_X over $GF(2)$ is given by the matrix
4.3 Cocircuits of the es-Splitting Matroid

\[A^e_X = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & a & \gamma \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \end{pmatrix} \]

Note that \(\delta'_X = [1, 1, 1, 1, 0, 1, 0] \) is a row vector corresponding to the 5th row of \(A^e_X \) and \(supp(\delta'_X) = \{1, 2, 3, 4, 5, a\} \).

Thus, the set of cocircuits of \(M^e_X \) consists of the members of the following collections.

\[C^*_1 = \{ \{2, 5\}, \{3, 6\}, \{4, 5, 6\}, \{2, 4, 6\}, \{3, 4, 5\}, \{2, 3, 4\} \}; \]
\[C^*_2 = \{ \{1, 5, 6, \gamma\}, \{1, 2, 6, \gamma\}, \{1, 3, 5, \gamma\}, \{1, 4, \gamma\}, \{1, 2, 3, \gamma\} \}; \]
\[C^*_3 = \{ \{2, 4, a, \gamma\}, \{4, 5, a, \gamma\} \}; \]
\[C^*_4 = \{ \{1, 2, a\}, \{1, 5, a\}, \{1, 3, 4, a\} \}; \]
\[C^*_5 = \{ \{3, a, \gamma\}, \{6, a, \gamma\} \}; \] and
\[C^*_6 = \{ \{1, 4, 6, a\} \} . \]