CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Introduction of computer networks and spanning tree protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>1.1</td>
<td>Computer networks</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Wired technologies</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Wireless technologies</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Scale</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Functional relationship (network architecture)</td>
</tr>
<tr>
<td>1.2</td>
<td>Classification of computer networks</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Personal area network</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Local area network</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Home area network</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Campus network</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Metropolitan area network</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Wide area network</td>
</tr>
<tr>
<td>1.2.7</td>
<td>Global area network</td>
</tr>
<tr>
<td>1.2.8</td>
<td>Enterprise Private Network</td>
</tr>
<tr>
<td>1.3</td>
<td>Virtual private network</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Internetwork</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Internet</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Intranets and extranets</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Overlay Network</td>
</tr>
<tr>
<td>1.4</td>
<td>Challenges in Routing</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Types of routers</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Distribution</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Core</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Network Congestion</td>
</tr>
<tr>
<td>1.5</td>
<td>Challenges in Switching</td>
</tr>
</tbody>
</table>

| Page No | |
|---------| |
1.5.1 Replacing a Central Hub with a Switch 20
1.5.2 Adding Switches to a Backbone Switched Network 20
1.5.3 Designing for Maximum Benefit 20
1.5.4 Managed or Unmanaged 21
1.5.5 Store-and-Forward vs. Cut-Through 22
1.5.6 Blocking vs. Non-Blocking Switches 22
1.5.7 Switch Buffer Limitations 22

1.6 Research Goals: spanning tree protocol 28
1.6.1 LAN 29
1.6.2 Standardization 29
1.6.3 IEEE 802.1D 29
1.6.4 Spanning tree (mathematics) 29
1.6.5 Ethernet 30
1.6.6 Network switch 30
1.6.7 Protocol operations 30
1.6.8 Bridge Protocol Data Units (BPDUs) 32
1.6.9 STP switch port states 33

1.7 Research Contributions 34
1.7.1 Avoid Redundancy 34
1.7.2 Reestablishment in change of topology 35
1.7.3 Prioritizing merging across the wire 35
1.7.4 Making link and routing paths more efficient 36

1.8 Organization of the Thesis 37

Chapter - 2 Spanning tree protocol optimization

2.1 Introduction 39
2.2 Motivation 40
2.2.1 Why spanning tree protocol ? 42
2.2.2 Limitations of Existing Techniques 43
2.3 The spanning tree routing & switching Architecture 47
2.3.1 Overview of STPRSA 48
2.3.2 Spanning tree channeling system 51
Chapter 2

2.3.3 Zonal approach

2.4 System Implementation and Experimentation
- **2.4.1 Implementation Details** 57
- **2.4.2 Experimental Setup** 59
- **2.4.3 Experimental Results** 60

2.5 Conclusion
- **2.5.1 Remaining Issues** 64
- **2.5.2 Concluding Remarks** 65

Chapter 3

Unique Index management in routing

3.1 Introduction

3.2 Motivation
- **3.2.1 Why is index management necessary?** 68
- **3.2.2 MIB Model and Assumptions** 70
- **3.2.3 Limitations of Existing Approaches** 72

3.3 The UIMR design
- **3.3.1 Overview** 73
- **3.3.2 Top-Down Approach** 74
- **3.3.3 Complexity of UIMR** 78

3.4 System Implementation
- **3.4.1 Implementation Details** 80
- **3.4.2 Experimental Setup** 81
- **3.4.3 Experimental Results** 91

3.5 Performance Evaluation
- **3.5.1 Effectiveness of UIMR planning** 96
- **3.5.2 Evaluation Results** 97

3.6 Conclusion
- **3.6.1 Remaining Issues** 98
- **3.6.2 Concluding Remarks** 98

Chapter 4

Performance evaluation of optimally usage of hardware forwarding resource in router domain

4.1 Introduction

4.2 Motivation
Chapter 4

4.2.1 Why Autonomous Routers?
4.2.2 Limitations of Existing Approaches

4.3 HFRD Architecture
4.3.1 Software Architecture and Operations
4.3.2 Hardware Prototype

4.4 Measurement Protocol
4.4.1 Overview
4.4.2 Greedy Algorithm
4.4.3 Forwarding table using adaptive algorithm

4.5 HFRD Positioning System
4.5.1 Technique 1 - load distribution
4.5.2 Technique 2 - Prioritization
4.5.3 Technique 3 - Active programming

4.6 Performance Evaluation
4.6.1 Experimental Setup
4.6.2 Reducing Space to Probe
4.6.3 Optimizing multihop links
4.6.4 HFRD optimization
4.6.5 Maintaining Accuracy

4.7 Summary & Future Directions

Chapter 5

Time convergence in switching & routing

5.1 Introduction
5.2 Motivation
5.2.1 Why time convergence?
5.2.2 Limitations of Existing Approaches

5.3 The TSR Architecture
5.3.1 Overview of TSR
5.3.2 SEGA & TRACER
5.3.3 Layered Approach

5.4 System Implementation
5.5 Performance Evaluation
5.5.1 Experimental Results and Analysis

136

5.6 Conclusion

139

5.6.1 Concluding Remarks

139

5.6.2 Remaining Issues

140

Chapter 6 Conclusion and future work

141

6.1 Primary contributions

141

6.2 Future work

143

Appendices

Bibliography