LIST OF FIGURES

Chapter 1

Figure 1.1: Losses in field crops due to insect pests.

Figure 1.2: Polyphagous insect pest *Helicoverpa armigera*.

Figure 1.3A: Relative gut proteinase activity of *H. armigera* during the stages of larval development.

Figure 1.3B: Expression of trypsin-like proteinases of *H. armigera* larvae feeding on various host plants.

Figure 1.4: Plant-insect interaction – Co-evolution for survival.

Figure 1.5: Protease-inhibitor families in plants.

Figure 1.6A: The solvent-exposed protease binding loop (residues P3-P3’) of serine PIs.

Figure 1.6B: Binding loop structures of representatives of inhibitor families.

Figure 1.7: Systemin signalling and activation of jasmonate pathway.

Figure 1.8: Phylogenetic tree of Pin-II PIs from Solanaceae.

Figure 1.9: Pin-II PI gene structure and evolution.

Figure 1.10: Unequal cross-over events in Pin-II PI family.

Figure 1.11: Model of Pin-II PI precursors.

Figure 1.12: Diagrammatic representation of the three types of topologies in IRDs of Pin-II PIs.

Figure 1.13A: Amino acid sequence of NaProPI.

Figure 1.13B: 3-D structure of Pin-II PI proteins.

Figure 1.14A: Backbone superpositions of C4A/C41A-T1 with the wild-type protein T1.

Figure 1.14B: Backbone superpositions of C8A/C37A-T1 with the wild-type protein T1.

Figure 1.14C: Detailed view of C4A/C41A-T1 showing the stabilization of the reactive-site loop.

Figure 1.15A: Structure of the TI-II-(subtilisin)2 complex.

Figure 1.15B: Copies of the RSLs from domain I of unbound TI-II are superimposed onto that of bound TI-II.
Figure 1.16A: Growth of *H. armigera* larvae on cotton leaf-based diets containing PIs.

Figure 1.16B: Cotton balls on field-grown transgenic cotton plants.

Figure 1.17: Endogenous functions of Pin-II PIs.

Chapter 2

Figure 2.1: RT-PCR analysis of *CanPIs*.

Figure 2.2A: Abundance of 1-, 2-, 3- and 4-IRD *CanPIs* upon each induction treatment to *C. annuum* leaves.

Figure 2.2B: Comparison of *CanPI* expression patterns in *C. annuum* leaves after different inductions.

Figure 2.2C: Expression analysis of selected *CanPIs* in un-induced and systemic leaf tissue of induced *C. annuum*.

Figure 2.2D: Multiple sequence alignment of deduced aa sequences of signal peptides (SP-1 to SP-13) of *CanPI* genes displaying variations.

Figure 2.3: Dendrogram of *CanPIs* based on deduced amino acid sequences of full-length genes of 1- to 4-IRDs isolated from *C. annuum*.

Figure 2.4A: Multiple sequence alignment of deduced aa sequences of IRDs (55 in number) constituting all the *CanPI* genes.

Figure 2.4B: Dendrogram of 55 unique IRDs based on deduced aa sequences from full-length *CanPI* genes.

Figure 2.5A: The frequency of occurrence for individual IRDs per treatment.

Figure 2.5B: Pie charts represent the distribution of IRDs under each induction.

Figure 2.6A: The accumulation of trypsin inhibitory activity in uninduced and induced leaves (AI, W+W or W+OS).

Figure 2.6B: In-gel TI profiles of induced *C. annuum* leaves.

Figure 2.6C: The percentage inhibition of HGP by PIs from leaf extracts.

Figure 2.6D: The inhibition of HGP isoforms by leaf extracts.

Figure 2.7: 2D-TI activity profiles of uninduced and induced *C. annuum* leaves.

Figure 2.8: MALDI-TOF-MS characterization of partially purified PIs from leaves.
Figure 2.9A: Tissue-specific TI activity in various tissues of a mature *C. annuum* plant.

Figure 2.9B: 2D-TI activity profiles of various *C. annuum* plant parts.

Chapter 3

Figure 3.1A: Diagrammatic representation highlighting the gene structure of four types of *CanPIs* found in *C. annuum*.

Figure 3.1B: Neighbor-joining tree of *CanPIs* based on deduced aa sequences of full length genes, number of IRDs and the accession number.

Figure 3.2: Multiple sequence alignment of deduced aa sequences of unique IRDs from the selected *CanPIs*.

Figure 3.3: Characterization of rCanPIs having either 1, 2, 3 or 4-IRDs each by SDS-PAGE and MALDI-TOF-MS.

Figure 3.4: Trypsin inhibitory activity (TI) visualization of rCanPIs.

Figure 3.5: Enzyme inhibition by rCanPIs.

Figure 3.6: IF–MALDI-TOF-MS analysis of rCanPI-15.

Figure 3.7A: IF-MALDI-TOF-MS analysis of 2-IRD PI interacting with HGP.

Figure 3.7B: IF-MALDI-TOF-MS analysis of 3-IRD PI interacting with HGP.

Figure 3.8A: IF-MALDI-TOF-MS analysis of rCanPI-7-HGP interaction.

Figure 3.8B: Dilution effect on rCanPI-7-HGP interaction.

Figure 3.9: IF-MALDI-TOF-MS analysis of the interaction(s) between rCanPI-7 and various proteases.

Figure 3.10: *In vitro* stability of one and/or two domain rCanPIs towards HGP.

Figure 3.11: *In vitro* stability of multi-IRD rCanPIs towards HGP.

Figure 3.12: Comparative inhibition of HGP isoforms by various rCanPIs.

Figure 3.13A: *In vivo* inhibition of HGP isoforms by rCanPIs.

Figure 3.13B: *In vivo*: Stability of rCanPIs in *H. armigera* gut.

Chapter 4

Figure 4.1A: Vector map of pMCSG vector.

Figure 4.1B: Generalized organization of MCSG vectors.
Figure 4.2A: Diagrammatic representation highlighting the gene structure of the two CanPIs from C. annuum.

Figure 4.2B: Purification of recombinant CanPI-15 and CanPI-7.

Figure 4.3: Circular dichroism study of recombinant proteins.

Figure 4.4A: Inhibition kinetics of CanPI-15 and -7 against bovine trypsin.

Figure 4.4B: Maximum percent inhibition of bovine trypsin, chymotrypsin, elastase, HGP and SGP by rCanPIs.

Figure 4.5A: Activity of rCanPIs under varying conditions of pH.

Figure 4.5B: ANS binding studies of rCanPIs under varying conditions of pH.

Figure 4.5C: Activity of rCanPIs under varying conditions of temperature.

Figure 4.6: CD-spectra of rCanPIs under varying conditions.

Figure 4.7: In silico structure prediction of CanPI-7.

Figure 4.8: Ramchandran plot analysis for CanPI-7 predicted structure.

Figure 4.9: Docking of CanPI-7 with two molecules of trypsin and two molecules of chymotrypsin.

Figure 4.10: Docking of CanPI-7 with four molecules of trypsin.