REFERENCES

Aalen, O. (1976)
Non-parametric inference in connection with multiple decrement models.

Aalen, O. (1978)
Non-parametric inference for a family of counting processes.

Aalen, O., Borgan, O., Keiding, N. and Thorhann, J. (1980)
Interaction between life history events: Non-parametric analysis for
prospective and retrospective data in the presence of censoring.

Simultaneous inference and the choice of variable subsets in
multiple regression. Technometrics, 16, 221-27.

The fitting of exponential, Weibull and extreme value distributions to
complex censored survival data using GLIM.
Appl. Statist., 29, 156-63.

Aitkin, M., Laird, N. and Francis, B. (1983)
A reanalysis of the Stanford heart transplant data (with discussion).

Information theory and an extension of the maximum likelihood
principle. In Petrov and Czokl eds., Proc. of the 2nd Inter. Symp. on

Ancombe, F.J. (1964)

Linear non-parametric tests for comparison of counting processes with
applications to censored survival data.

Cox's regression model for counting processes: A large sample study.

Smooth estimates for the hazard function.

A two-step regression model for hazard functions.

Aranda-Ordaz, F.J. (1980)
Transformations to additivity for binary data.
Armitage, P. (1959)
The comparison of survival curves (with discussion)

Bain, L.J. (1978)
Statistical analysis of Reliability and Life testing models:

Bartholomew, D.J. (1957)

The discarding of variables in multivariate analysis.
Biometrika, 54, 357-65.

A critical comparison of allogenic bone marrow transplantation
and conventional chemotherapy as treatment for acute

Bennett, S. (1983)
Analysis of survival data by the proportional odds model.

Berkson J. and Gage, R.P. (1952)
Survival curve for cancer patients following treatment.

Non-parametric estimation of the slope of a truncated regression.
Ann. Statist., 11, 505-14.

Efficiencies of experimental designs for an illness death model.
Biometrics, 40, 622-38.

Breiman, L. and Friedman, J.H. (1985)
Estimating optimal transformations for multiple regression and

A generalized Kruskal-Wallis test for comparing K samples subject
to unequal patterns of censorship. Biometrika, 57, 579-94.

Covariance analysis of censored survival data. Biometrics, 30, 89-100.

A large sample study of the life table and product limit estimates
The Analysis of Case-Control Studies. Lyon: IARC.

Brookmeyer, R. (1983)
Prediction intervals for survival data. Statist. Med., 2,

Buckley, J. and James, I. (1979)
Linear Regression with censored data, Biometrika, 66, 429-36.

Recent advances in bone marrow transplantation: In ULCA symposia
on molecular and cellular biology, 7, 141-58.

Chiang, C.L. (1961)
On the probability of death from specific causes in the presence of
competing risks. Proc. Fourth Berkeley Symposium in Mathematical

Chiang, C.L. (1968)
Introduction to stochastic processes in Biostatistics. New York, Wiley.

Chiang, C.L. (1970)
Competing risks and conditional probabilities. Biometrics, 26,767-76.

Chikkara, R.S. and Folks, J.L. (1977)
The Inverse Gaussian distribution as a lifetesting model.
Technometrics, 19, 461-468.

A general model for testing the proportional hazards and the
accelerated failure time hypothesis in the analysis of censored

Clayton, D.G. (1976)
An odds ratio comparison of ordered categorical data with censored
observations. Biometrika, 63, 405-08.

Clayton, D.G. (1978)
A model for the association in bivariate lifetable and its
applications in epidemiological studies of familial tendency in

The semi-parametric Pareto model for regression analysis of survival

Cornfield, J. (1957)
The estimation of the probability of developing a disease in the

Maximum likelihood estimation for choice-based samples.
Econometrika, 49, 1289-1316.
Cox, D.R. (1959)

Cox, D.R. (1961)
Tests of separate families of hypothesis.
Proc. 4-th Berkeley Symp., 1, 105-23.

Cox, D.R. (1962)
Further results on tests of separate families of hypothesis.

Cox, D.R. (1970)
Analysis of binary data. London : Chapman and Hall.

Cox, D.R. (1972)
Regression models and lifetables (with discussion)

Cox, D.R. (1975)

Cox, D.R. and Snell, E.J. (1968)
A general definition of residuals (with discussion)

Crammer, H. (1928)
On the composition of elementary errors.
Skandinavisk Aktuarforbunds Tidsskrift, 11, 13-74.

Statistical analysis of survival data.

Crowley, J. and Hu, M. (1977)
Covariance analysis of heart transplant survival data.

Hayward, California.

The theory of Competing Risks. London : Griffin.

dBoor, C. (1978)
A practical guide to splines. Springer-Verlag, New York.
Maximum likelihood from incomplete data via the EM algorithm (with discussion).

Dumonceaux, R. and Antle, C.E. (1973)
Discrimination between the lognormal and the Weibull distribution.
Technometrics, 15, 923-26.

A fast model selection procedure for large family of models.
J. Amer. Statist. Assoc., 82, 205-213

Efron, B. (1977)
The efficiency of Cox's likelihood function for censored data.

Efron, B. (1979)
Bootstrap methods. Another look at the Jackknife.

Efron, B and Hinkley, D.V. (1978)
Assessing the accuracy of the maximum likelihood estimator: observed
verses expected Fisher information (with discussion).
Biometrika, 65, 457-87.

Construction of optimal unbiased inference procedures for the
parameters of the gamma distribution. Technometrics, 20, 485-89.

Epstein, B. and Sobel, M. (1953)

Some theorems relevant to life testing from an exponential

Farewell, V.T. and Prentice, R.L. (1977)
A study of distributional shape in life testing.
Technometrics, 19, 69-75.

Feigl, P. and Zelen, M. (1965)
Estimation of exponential survival probabilities with concomitant

Modified Kolmogorov-Smirnov test procedures with application to

A class of rank test procedures for censored survival data.
Biometrics, 69, 553-66.
Folks, J.L. and Chhikara, R.S. (1978)
The inverse Gaussian distribution and its statistical application—

Regression by leaps and bounds. Technometrics, 16, 499-511.

Gail, M.H. (1975)
A review and critique of some models used in competing risk analysis.

Gehan, E.A. (1965)
A generalized Wilcoxon test for comparing arbitrarily singly-
censored samples. Biometrika, 52, 203-23.

Censoring and Stochastic Integrals. Mathematical Centre Tracts,
no.124, Amsterdam : Mathematisch Centrum.

Large sample behaviour of the product-limit estimator on the

Greenwood, M. (1926)
The natural duration of cancer. Reports on Public Health and Medical
Subjects. 33, 1-26, LONDON Her Majesty's Stationary Office.

Gross, A.J. and Clark, V.A. (1975)
Survival Distributions: Reliability Applications in the Biomedical

Inferential procedures for the generalised gamma distribution

Halley, E. (1693)
An estimate of the degrees of the mortality of mankind drawn from
curious tables of the birth funerals of the city of Breslav.
Philos. Trans. R. Soc., 17, 596-610.

Halperin, M. (1952)
Maximum likelihood estimation in truncated samples.

Hastie, T. (1986)
Generalised additive models: A GAIM analyst’s toolbox.

Hastie, T. and Tibshirani, R. (1986)
Generalised additive models (with discussion).
Statistical Science, 1, 297-318.
Hastie, T. and Tibshirani, R. (1987)
Generalised additive models: Some applications.

A procedure for model search in multi-dimensional contingency

The analysis of rates and of survivorship using log-linear models.
Biometrics, 36, 299-305.

Holt, J.D. (1978)
Competing risk analysis with special reference to matched pair

Hongkong Chest Service / Tuberculosis Research Centre / British
Medical Research Council (1981)
A controlled trial of 2-month, 3-month and 12-month regimens of
chemotherapy for sputum smear negative pulmonary tuberculosis.

Huber, P.T. (1981)

Huber, P.T. (1985)

Indian Council of Medical Research / British Medical Research
Council (1989)
A controlled trial of short-course regimens of chemotherapy in
patients receiving ambulatory treatment or undergoing radical surgery

Jewel, N. (1984a)
Least squares regression with data arising from stratified samples of
the dependent variable. Technical Report, Dept. of Bio Statistics,
University of California, Berkeley.

Jewel, N. (1984b)
Least squares estimation of the stage of a truncated regression.
Technical Report, Dept. of Bio-Statistics, University of California,
Berkeley.

Covariate analysis of survival data small sample study of Cox's

A generalised class of non-parametric tests for survival analysis.
Biometrics, 45, 157-70.

Jones, D. and Whitehead, J. (1979)
Sequential forms of the log rank and modified Wilcoxon tests for
Kalbfleisch, J.D. (1974)
Some efficiency calculations for survival distributions.
Biometrika, 61, 31-38.

Kalbfleisch, J.D. and Mackay, R.J. (1978)
Remarks on a paper by Confield and Detre.

Kalbfleisch, J.D. and Prentice, R.L. (1973)
Marginal likelihoods based on Cox's regression and life model.
Biometrika, 60, 267-78.

The statistical Analysis of failure time data. Wiley, New York.

Kaplan, E.L. and Meier, P. (1958)
Non-parametric estimation from incomplete observations.

Koehler, A.B. and Murphree, E.S. (1988)
A comparison of the Akaike and Schwartz criteria for selecting model order.

Koul, H.L., Susarla, V. and Van Ryzin, J. (1981)
Regression analysis with randomly censored data.
Ann. Statist., 6, 1276-88.

Kozioł, J.A. (1978)
A two sample Cramér-von Mises test for randomly censored data.
Biom. J., 20, 603-08.

Kullback, S. and Leibler, R.A. (1951)

Lagakos, S.W. (1978)

Lagakos, S.W. (1979)

Lagakos, S.W., Sommer, C.J. and Zelen, M. (1978)

Nelson, W.B. (1972)
Theory and applications of hazard plotting for censored failure data. Technometrics, 14, 945-65.

Nelson, W.B. and Schemer, R (1979)
Inference for (log) normal life distributions from small singly censored samples and BLUE's. Technometrics, 21, 43-54.

Oakes, D. (1977)
The asymptotic information in censored survival data. Biometrika, 64, 441-48.

Parzen, E. (1962)

Peterson, A.V. (1977)

Peto, R. (1972)

Lindsay, B. (1980)

Mantel, N. (1966)

Mantel, N. and Haenszel, W. (1959)

Miller, R.G. (1976)
Miller, R.G. (1980)

Moeschberger, M.L. and David, H.A. (1971)
Life tests under competing causes of failure and the theory of competing risks. Biometrics, 27, 909-23.

Nazareth, O., Devadatta, S., Fox, W., Menon, N.K. et al (1971)

Nelder, J. and Wedderburn, R. (1972)

Nelson, W.B. (1969)
Prentice, R.L. (1978)
Linear rank tests with right censored data. Biometrika, 65, 167-79.

The analysis of failure times in the presence of competing risks. Biometrics, 34, 541-54.

Prentice, R.L. and Marek, P. (1979)

Raf, K., Susarla, V. and Van Ryzin, J. (1979)

Rosenblatt, M. (1956)

Savage, I.R. (1956)

Schwartz, G. (1978)

Seal, H.L. (1977)
Studies in the history of probability and statistics XXXV: Multiple decrement or competing risks. Biometrika, 64, 429-39.

Silverman, B.W. (1985)
Some aspects of spline smoothing approach to non-parametric regression curve fitting (with discussion).

Smirnov, N.V. (1939)

Spiegelhalter, D.J. and Stovin, P.G.I (1983)

Additive regression and other nonparametric models. Technical Report No. 33, Department of Statistics, University of California, Berkeley, California.

Tarone, R.E. and Ware, J. (1977)
On distribution-free tests for equality of survival distributions. Biometrika, 64, 156-60.

Taublee, J.D. (1979)

Tibshirani, R.J. (1982)

Tibshirani, R.J. (1983)

Tibshirani, R.J. and Ciampi, A. (1983)

Tsatis, A.A. (1975)

A large sample study of Cox's regression model. Ann. statist. 9, 93-108.
Tuberculosis Chemotherapy Centre, Madras (1959)
A concurrent comparison of Home and Sanatorium treatment of pulmonary tuberculosis in South India.

Tuberculosis Chemotherapy Centre, Madras (1960)

Tuberculosis Research Centre, Madras (1983)
Study of chemotherapy regimens of 5 and 7 months duration and the role of corticosteroids in the treatment of sputum positive patients with pulmonary tuberculosis in South India.
Tubercle, 64, 73-79.

Tuberculosis Research Centre, Madras / National Tuberculosis Institute, Bangalore (1985)
A controlled clinical trial of 3- and 5- month regimens in the treatment of sputum positive pulmonary tuberculosis in South India.

Vardi, Y. (1983)
Non parametric estimation in the presence of length bias.

Vardi, Y. (1985)
Empirical distribution in selection bias model.

Venkatesan, P. and Viswanathan, K. (1987a)

Venkatesan, P. and Viswanathan, K. (1987b)

Venkatesan, P. and Viswanathan, K. (1987c)
A survival model for the paired observations of response times for relapse cases. Paper presented at the 'All India Seminar on Statistical Modelling in Health and Disease', Jhansi, Oct., 4-5.

A model for the analysis of repeated specimens in clinical studies.
Paper presented at the '6th Annual Convention and National Seminar on
Medicine, Health and Nutrition', Hyderabad, Oct., 27-29 &

A new method for the assessment of treatment effects in clinical
studies. Paper presented at the '6th Annual Convention and National
Seminar on Medicine, Health and Nutrition', Hyderabad, Oct., 27-29 &

Regression Methods for analysis of censored survival data with time
dependent covariates. Paper presented at the 'Seminar on Statistics:
Theory and Applications', Layola College, Madras.

Comparison of Cox and logistic regression models under fixed period
outcome. Paper presented at the '7th Annual Conference of ISMS',
Institute of Medical Sciences, Banaras. Feb., 1-3.

A non-parametric prediction interval for censored survival data.

Venkatesan, P., Viswanathan, K. and Prabhakar, R. (1990c)
A model for the analysis of repeated specimens.

A cause specific hazards model for the analysis of survival times of
spinal tuberculosis patients in the presence of competing risks.
Paper presented at the '5th Annual Conference of ISMS', Govt. Medical
College, Srinagar, Sep. 24-26.

An application of ridit analysis using EM algorithm.
Paper presented at the '7th Annual Conference of ISMS',
Institute of Medical Sciences, Banaras Hindu University, Feb. 1-3.

don Mises, R. (1939)

Wabha, G. (1975)
Optimal convergence properties of variable knot kernal and orthogonal

Wegman, E.S. and Wright, I.W. (1983)

Wellner, J.A. (1985)
Semi-parametric models: Progress and problems.
Proc. ISI Meeting, 23, 1-17.
Williams, J.S. and Lagakos, S.W. (1977)

The robustness of lifetesting procedures derived from the exponential distribution. Technometrics, 3, 29-49.

Use of concomitant variables and incomplete survival information in the estimation of an exponential survival parameter. Biometrics, 22, 665-72.