INDEX

Chapter-I

Introduction

1.1. Energy
1.2. Sources of energy
 a) Renewable sources
 b) Non-renewable sources of energy
1.3. Definition of solar energy
1.4. Harvesting
1.5. Solar irradiation and availability
1.6. Brief history of the solar cells
1.7. Development trend
 a) First generation
 b) Second generation
 c) Third generation
1.8. A brief introduction of dye-sensitized solar cells
1.9. DSSCs structure
1.10. DSSCs components
 a) Transparent conducting oxide-coated glass substrate
 b) Working electrode
 c) Sensitizer
 d) Counter electrode
 e) Electrolytes
1.11. DSSCs operational principle
1.12. Quantum dot-sensitized solar cells
 a) Working principle and basic components of QDSCs
 b) Basic components
 i. Mesoporous nanocrystalline semiconductor
 ii. Quantum dots
iii. Electrolyte
iv. Counter electrode
v. Electron transfer reactions within QDSCs

1.13. Electronic parameters of solar cells
 a) Short-circuit current
 b) Open-circuit voltage
 c) Maximum power output
 d) Fill factor
 e) Incident photon-to-current conversion efficiency
 f) Solar-to-electrical power conversion efficiency

1.14. Aim and scope of present thesis

Chapter-II

Thin film deposition methods and characterization techniques

2.1. Introduction
2.2. Chemical bath deposition
 a) Reaction bath
 b) Mechanism of film formation
 c) Factors governing the chemical bath deposition
2.3. Successive ionic layer adsorption and reaction (SILAR) method
 a) Theoretical background
 b) Mechanism
2.4. Field-emission scanning electron microscopy
 a) Scanning process and a process of image formation
2.5. X-ray diffraction
2.6. Raman spectroscopy
2.7. Energy dispersive X-ray spectroscopy
2.8. Ultraviolet/visible (UV/Vis) absorption spectroscopy
2.9. Photovoltaic measurements
 a) Current-voltage (I-V) measurement
b) Short-circuit current density (J_{sc})

c) Open-circuit voltage (V_{oc})

d) Fill factor

e) Power conversion efficiency

f) Series resistance

g) Shunt resistance

2. 10 Incident photon-to-current conversion efficiency

2.11. Electrochemical impedance spectroscopy

2.12. Surface area

 a) Principle

 b) Classification

Chapter-III

DSSCs of chemically synthesized TiO2 film electrodes

3.1. Introduction

3.2. TiO$_2$ and solar energy

3.3. Chemical structures

 a) Anatase

 b) Rutile

 c) Brookite

3.4. Applications of TiO$_2$

 a) Photocatalytic

 b) Self-cleaning surfaces

 c) Medical

 d) DSSCs

3.5 synthesis method

3.6 Experimental details

3.7 Characterization details

 a) Structural analysis

 b) Morphology change
Chapter-IV

Photosensitization of mesoporous TiO2 with cadmium sulfide nanocrystals

4.1. Introduction
 a) Cadmium sulfide
 b) Applications

4.2. Experimental details
 a) Experimental setup for deposition of CdS NPs on TiO2 films by SILAR method
 b) Applications

4.3 Result and discussion
 a) Structural analysis
 b) Morphological evolution
 c) Compositional elucidation
 d) Optical studies
 e) Incident photon-to-electron conversion efficiency
 f) Photoelectrochemical studies
 g) Electrochemical impedance spectroscopy
Chapter-V

Photosensitization of Mesoporous TiO$_2$ with zinc sulfide nanocrystals

5.1. Introduction
 a) Zinc sulfide
 b) Applications
5.2. Experimental details and experimental details
5.3. Results and discussion
 a) Structural analysis
 b) Morphological change
 c) Surface composition
 d) Optical studies
 e) Incident photo-to-electron conversion efficiency
 f) Photoelectrochemical measurements
 g) Electrochemical impedance spectroscopy

Chapter-VI

Photosensitization of mesoporous TiO$_2$ with indium sulfide nanocrystals

6.1. Introduction
 a) Indium sulfide
 b) Properties
6.2. Experimental details
 a) Experimental setup for deposition of In$_2$S$_3$ on TiO$_2$ films by SILAR method
 b) Characteristics
6.3. Results and discussion
 a) Structural analysis
 b) Morphological change conformation
 c) Surface elemental compositions
 d) Optical studies
 e) Incident photon to-electron conversion efficiency
Chapter VI

Results, conclusion and future scope

7.1. Overview

7.2. Results, discussion and conclusions
7.3 Future scope