CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>INTRODUCTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>STUDY AREA</td>
<td>7</td>
</tr>
<tr>
<td>1.1a</td>
<td>GEOLOGY</td>
<td>8</td>
</tr>
<tr>
<td>1.1b</td>
<td>CLIMATE</td>
<td>9</td>
</tr>
<tr>
<td>1.2</td>
<td>REVIEW OF LITERATURE</td>
<td>11</td>
</tr>
<tr>
<td>1.3</td>
<td>PREVIOUS STUDIES IN</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>BHARATHAPUZHA RIVE BASIN</td>
<td>18</td>
</tr>
<tr>
<td>1.4</td>
<td>RELEVANCE OF THE STUDY</td>
<td>18</td>
</tr>
<tr>
<td>1.5</td>
<td>OBJECTIVES</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 2</th>
<th>HYDROGEOLOGY</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>INTRODUCTION</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>AQUIFER TYPES</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>BEHAVIOUR OF GROUNDWATER</td>
<td>25</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Water table</td>
<td>27</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Groundwater flow direction</td>
<td>28</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Grid Deviation</td>
<td>29</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Water level Fluctuation</td>
<td>31</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Long term trends</td>
<td>35</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Correlation of water level with rain fall</td>
<td>35</td>
</tr>
<tr>
<td>2.4</td>
<td>AQUIFER PARAMETER EVALUATION</td>
<td>36</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Field Measurements</td>
<td>37</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Data Processing Techniques</td>
<td>41</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Transmissivity</td>
<td>42</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Storage coefficient or storativity</td>
<td>46</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Optimum yield</td>
<td>47</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Specific capacity</td>
<td>47</td>
</tr>
</tbody>
</table>
2.4.7 Time for full recovery 51
2.4.8 Recovery Rate 51

CHAPTER 3 GEO-ELECTRICAL PROSPECTING
3.1 INTRODUCTION 53
3.2 RESISTIVITY OF GEOLOGICAL FORMATIONS 54
3.3 BASIC PRINCIPLES 58
3.3.1 DATA 60
3.4 CURVE TYPES 60
3.5 INTERPRETATION OF VES DATA 62
3.5.1 Qualitative Interpretation 62
3.5.2 Quantitative interpretation 63
3.6 ANALYSIS OF THE SUB-SURFACE PARAMETER 64
3.6.1 Resistivity of First and Second layers 64
3.6.2 Thickness of the First and Second layer 65
3.6.3 Depth to Aquifer Basement 65
3.6.4 Depth wise Iso-Resistivities 66
3.6.5 Dar Zarrouk parameters 68
3.6.6. a Longitudinal unit conductance(S) 68
3.6.6. b Transverse unit resistance (Tr) 69
3.6.6. c Coefficient of anisotropy (A) 70

CHAPTER 4 HYDROGEOCHEMISTRY
4.1 INTRODUCTION 71
4.2 GROUNDWATER SAMPLE COLLECTION 73
4.3 LABORATORY WORK 73
4.3.1 Physical parameters 73
4.3.2 Chemical analysis 81
4.4 Groundwater quality standards 95
4.4.1 Drinking water standards 95
4.4.2 Classification of Groundwater for agriculture/Irrigation utility 96
4.4.2a TDS
4.4.2b Sodium percentage
4.4.2c Electrical Conductivity
4.4.2d Wilcox diagram
4.4.2e Sodium Adsorption Ratio (SAR)
4.4.2f Suitability of water through USSL diagram
4.4.2g Residual sodium carbonates (RSC)
4.4.3 Corrosivity ratio
4.5 HILL–PIPER TRILINEAR DIAGRAM
4.6 STATISTICAL ANALYSIS OF
 GROUNDWATER CHEMISTRY

CHAPTER 5 GROUNDWATER RESOURCE MANAGEMENT

5.1 INTRODUCTION
5.2 ESTIMATION OF GROUNDWATER RECHARGE
5.3 GROUNDWATER BALANCE
5.4 STATIC GROUNDWATER RESERVE
5.5 DEMARCATION OF GROUNDWATER POTENTIAL ZONES

5.5.1 Preparation of the thematic maps
5.5.2 Geomorphology
5.5.3 Land use
5.5.4 Lineaments
5.5.5 Lineament density
5.5.6 Drainage
5.5.7 Drainage density
5.5.8 Relative relief
5.5.9 Slope analysis
5.5.10 Terrain analysis
5.6 GIS Analysis
5.7 GROUNDWATER RECHARGE
5.7.1 GROUNDWATER RECHARGE AND RIVER MANAGEMENT 138
5.7.2 ARTIFICIAL RECHARGE TO GROUNDWATER 139
5.8 DEMARCATION OF SUITABLE SITES FOR ARTIFICIAL RECHARGING OF GROUNDWATER 140
5.8.1 Available space for recharging 141
5.8.2 GIS Analysis 141

CHAPTER 6 SUMMARY AND CONCLUSIONS 143

REFERENCES