Chapter 6
Hypothesis Testing

The statistical tests applied on the findings of the data of the external customers are discussed in depth in this chapter. The statistical tests applied to the findings are listed below-

1. Reliability test – Cronbach’s alpha for internal consistency of the instrument
2. Factor analysis for dimensionality of the scale
3. Correlation and regression analysis for study of interdependence among variables

6.1 Objective 1 - To identify the dimensions of quality of services of a Tahsil office.

6.1.1 Hypothesis 1

Null Hypothesis H_0 – Customer satisfaction from quality of services provided by the Tahsil office does not depend on dimensions of service quality – tangibles, reliability, responsiveness, assurance and empathy.

Hypothesis H_1 - Customer satisfaction from quality of services provided by the Tahsil office depends on dimensions of service quality – tangibles, reliability, responsiveness, assurance and empathy.

Statistical Tests-

6.1.1.1 Factor Analysis for Maharashtra

Factor analysis resulted into three factors for the external customers. The three factors extracted for Maharashtra as well as Rajasthan are as follows-

1. Factor 1 is about the assurance which in training terms relates to the knowledge, skills.
2. Factor 2 is about the tangibles like toilets, visual features, equipment and appearance of the employees. The timeliness of the service is also included in this factor. However majority of the items are tangible and even time taken can be measured hence the factor is named as Tangibles.
3. Factor 3 is about responsiveness. This is more or less a psychological attitude closely related to social behavior. This attitude is about responsiveness, happiness and punctuality.
Figure 6.1 Maharashtra factor Analysis - External Customers

Factor 1

17. Understanding specific need of the customers
15. Courteousness
19. Knowledge
13. Responsiveness
12. Equal treatment to all
22. Personal attention
14. Behavior that instills confidence
20. Information
18. Knowledge to answer your questions
10. Prompt service
9. Knowledge about the time required to deliver service

Factor 2

3. Clean toilets, drinking water
5. Waiting, parking area
2. Visually appealing physical features
1. Modern equipment in working condition
7. Neat and tidy documents - deliverables

Factor 3

16. Happy and tension free employees
21. Punctuality of employees
Cronbach’s alpha values of the reduced scale based on factor analysis were 0.958 for Maharashtra and 0.956 for Rajasthan which again are in the ‘excellent’ range.

6.1.1.2 Regression analysis for Maharashtra

Factor-wise regression analysis was carried out in two steps. In the first step regression of each item within a factor with independent variable item number 25 i.e. overall satisfaction with the services provided by the Tahsil office gave the degree of dependence of the variable number 25 on other variables.

The Analysis of variance (ANOVA) F values at a significance level of less than .05 (at a confidence level of 95 percent) indicates a significant relationship between the items at a 95% confidence level. The ANOVA F values of the variables were studied in order to confirm the relationship among the variables.

All the variables entered into the regression analysis result into an equation as follows:

\[
Y = a + b_1X_1 + b_2X_2 + b_3X_3 + b_4X_4 + b_5X_5 + b_6X_6 + b_7X_7 + b_8X_8 + b_9X_9 + b_{10}X_{10} + b_{11}X_{11} + b_{12}X_{12} + b_{13}X_{13} + b_{14}X_{14} + b_{15}X_{15} + b_{16}X_{16} + b_{17}X_{17} + b_{18}X_{18} + b_{19}X_{19} + b_{20}X_{20} + b_{21}X_{21} + b_{22}X_{22} + b_{23}X_{23} + b_{24}X_{24} + b_{25}X_{25}
\]

Where \(Y \) = estimated value of the criterion dependent variable

\(a \) = Constant derived from the regression analysis

\(X_1 \) = Modern looking equipment

\(X_2 \) = Visually appealing physical features

\(X_3 \) = Clean toilets and drinking water

\(X_4 \) = Availability of enough work space for employees

\(X_5 \) = Neat employee appearance

\(X_6 \) = Information displayed at prominent place

\(X_7 \) = Neat and tidy documents

\(X_8 \) = Services provided in time limit

\(X_9 \) = Employees tell when services will be done

\(X_{10} \) = Prompt service by employees

\(X_{11} \) = Insistence on service free records

\(X_{12} \) = Equal treatment to all
X_{13}= Employees never too busy to respond
X_{14}= Behavior that instills confidence
X_{15}= Consistently courteous employees
X_{16} = Happy and tension free employees
X_{17}= Understanding customer’s specific needs
$X_{18}= $ Knowledge to answer customer’s questions
$X_{19} = $ Sufficient knowledge of Acts and rules
$X_{20}= $ Provision of information on schemes
$X_{21} = $ Punctuality of employees
$X_{22} = $ Personal attention
$X_{23} = $ Effective use of computers
$X_{24} = $ Training for better services
$X_{25}= $ Satisfaction with the services
b_1 to $b_{25} = $ contribution of each variable to the dependent variable

In the first step the linear multivariate regression analysis was carried out by entering the variables from each factor as independent variables.

The variables from all the factors thus entered in the first step were again used for a stepwise linear regression with the dependent variable 25. The regression equation for customer satisfaction in case of Maharashtra came out to be –

\[
\text{Customer satisfaction} = 0.112 + 0.411 (\text{employee knowledge}) + 0.349 (\text{modern looking equipment}) + 0.227 (\text{prompt service}) + 0.213 (\text{provision of information})
\]

$R= 0.841 \quad R \text{ square}= 0.707 \quad \text{sig.} = 0.000 \quad p< 0.01$

The Analysis of variance (ANOVA) F values at a significance level of less than .05 (at a confidence level of 95 percent) indicates a significant relationship between the items at a 95% confidence level. In this study we used the magnitude of the standardized regression coefficients (or beta) for assessing the importance of the value dimensions in the different stages. If multi-collinearity is present, however, the interpretation of the standardized regression coefficient as an importance measure of an individual independent variable might not be warranted.
The R value is a ‘goodness of fit’ indicator and nearer the value of R to 1 better is the fitness of the variables in the equation. The value of $R = 0.841$ in this equation indicates a good fit of the variables. Beta values 0.411 of employee knowledge; 0.349 of modern looking equipment; 0.227 of prompt service and 0.213 of provision of information suggest that they contribute well to the dependent variable at $p < 0.01$. If the value of the variable is considered as one with all other variables being constant the variable contributes equal to its beta value.

Thus we may conclude that the customer satisfaction in Maharashtra depends on the following items-

- 14- The behavior of employees in the Tahsil office instills confidence in the customers. *(Excluded on account of multi-collinearity).*
- 10- Employees of the Tahsil offices will give prompt service to customers.
- 19- The employees of the Tahsil office have sufficient knowledge of the acts and rules regarding their work.
- 12- Employees of the Tahsil office give equal treatment to all the customers. *(Excluded on account of multi-collinearity).*
- 20- Employees of the Tahsil office provide you proper information on the new schemes, services, works and technology.
- 1- The Tahsil office has modern looking equipment like computer, fax, Xerox.

6.1.1.3 Factor Analysis for Rajasthan

Factor analysis is carried out in order to find out the linear collinearity among variables and group the highly collinear or related variables together. Factor analysis in case of Rajasthan resulted into three factors similar to those in Maharashtra with a little difference in the variables loaded on each factor. The factors extracted are displayed in the figure 6.2 below.
Figure- 6.2 Rajasthan- factor Analysis - External Customers

Factor 1
- 18. Knowledge to answer questions
- 15. Courteousness
- 25. Satisfaction with the service
- 21. Employee punctuality
- 22. Employees give personal attention
- 14. Behavior that instills confidence
- 19. Knowledge about schemes
- 13. Responsiveness
- 12. Equal treatment to all

Factor 2
- 6. Important information displayed at prominent place
- 7. Neat and tidy documents- deliverables
- 2. Visually appealing physical features
- 8. Timely services

Factor 3
- 11. Error free records
- 20. Provision of information by employees
- 16. Happy and tension free employees
6.1.1.4 Regression Analysis for Rajasthan

The factor-wise regression analysis was carried out in two steps. In the first step the linear multivariate regression analysis was carried out by entering variables from each factor in the regression analysis as independent variables.

The variables from all the factors thus entered in the first step were again used for a stepwise linear regression with the dependent variable 25. The regression equation for customer satisfaction in case of Rajasthan comes out to be –

\[
\text{Customer satisfaction} = 0.249 + 0.367 \text{ (Knowledge to answer questions)} + 0.318 \text{ (Responsiveness of the employees)} + 0.099 \text{ (Information provided by employees)} + 0.174 \text{ (Courteousness of employees)}
\]

\[
R = 0.928 \quad \text{R square} = 0.862 \quad \text{sig.} = 0.000 \quad p < 0.01
\]

The R value is a ‘goodness of fit’ indicator and nearer the value of R to 1 better is the fitness of the variables in the equation. The value of \(R = 0.928 \) in this equation indicates a good fit of the variables. Beta values 0.367 of knowledge to answer questions; and 0.318 Responsiveness of the employees; 0.099 Information provided by employees and 0.174 for Courteousness of employees suggest that they contribute well to the variable at \(p < 0.01 \). If the value of the variable is considered as one with all other variables being constant the variable contributes equal to its beta value. Though the contribution of information provided by employees at 0.099 appears quite less the removal of the variable distorts the equation. Hence it is retained in the equation.

Thus we may conclude that the customer satisfaction in Rajasthan depends on the following items-

- 18- Employees in the Tahsil office have the knowledge to answer your questions.
- 13- Employees in the Tahsil office are never too busy to respond to your request.
- 15- Employees in the Tahsil office are consistently courteous with you.
- 20- Employees of the Tahsil office provide you proper information on the new schemes, services, works and technology.
Results-

The dimensions based on the variables present in the regression equation come out to be Assurance, Responsiveness and Tangibles in the descending order of importance. Results of factor analysis and regression strongly support each other.

On the basis of the results of the regression analysis it is found that customer satisfaction is dependent on Assurance, Responsiveness and Tangibles. Thus the null hypothesis is accepted.

6.2 Objective 2- To find out the relationship between training and job satisfaction among the employees of the Tahsil office.

6.2.1 Hypothesis 2

Null Hypothesis H_0 - Job satisfaction of the employees of the Tahsil office is not related to satisfaction with training.

Hypothesis H_2 - Job satisfaction of the employees of the Tahsil office is positively related to satisfaction with training.

Statistical tests-

6.2.1.1 Factor Analysis - Maharashtra

Factor analysis resulted into seven factors in case of Maharashtra. The hypothesis is tested using two statistical tests- correlation analysis and regression analysis. The correlation analysis tells us about the collinearity or linear relationships among variables while regression analysis tells us about the dependence of variables.

The seven factors extracted are-

1. The satisfaction is regarding the job, training received or the existing system of training. 2. The second factor is about competency training after the employees join services. 3. The third factor is about information in the form of a good library, information about new schemes and support in the form of services and equipments in time of need, job recognition. 4. The fourth factor is about the equipments available in the office and their utility. 5. The fifth factor is about management of customer expectations and provision of training for management of stress. 6. Sixth factor is about effective use of technology in the job functioning and service delivery. 7.
Seventh factor is about regular time bound training. 8. The eighth factor is about a departmental training policy which will include all the aspects of training.

Figure 6.3- Maharashtra- Factor Analysis- Internal Customers-

- **Factor 1**: Training at regular intervals
 - 25. Efficiency of existing training system
 - 28. Job satisfaction

- **Factor 2**: 11. Job Related Training
 - 19. Initial training on recruitment

- **Factor 3**: 1. Availability of equipment- fax, Xerox
 - 2. Working condition of equipment
 - 16. Recognition for good work
 - 3. Services and equipment
 - 13. Information about new schemes, technology
 - 9. People expecting more work

- **Factor 4**: 17. Proper training for better services
 - 23. Training for stress management

- **Factor 5**: 14. Use of modern technology

- **Factor 6**: 20. Training at regular intervals

- **Factor 7**: 24. Training policy for the Department
6.2.1.2 Correlation Analysis - Maharashtra

The correlation analysis shows that there is a strong correlation among the variables within a factor while there is a variable degree of correlations among the other variables. The item pair 1 and 2, and items 25, 28, 29 and 30 appear to be highly related to each other. The item pairs 3 and 4, 3 and 13, 11 and 19 are also related to each other. The factor analysis is confirmed by the correlations. The regression of the items within each of the factors with dependent variables 23, 25, 28, 29 and 30 separately revealed inter-relations among the variables. Results of regression analysis helped in developing the equations revealing the contributors to these variables.

Table 6.1 Correlation among variables

<table>
<thead>
<tr>
<th></th>
<th>Q.25</th>
<th>Q.28</th>
<th>Q.29</th>
<th>Q.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q.25</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q.28</td>
<td>0.717*</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q.29</td>
<td>0.747*</td>
<td>0.759*</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Q.30</td>
<td>0.360*</td>
<td>0.389*</td>
<td>0.495*</td>
<td>1</td>
</tr>
</tbody>
</table>

The correlation among the variables is significant at the 0.01 level (two tailed). Thus efficiency of training system, training at regular intervals, job satisfaction and satisfaction with training are variables which are highly correlated with each other.

6.2.1.3 Regression Analysis

Regression was carried out in two steps. In the first step the dependent variables were regressed with variables included in each factor in order to remove multiple co-linearity. Variables entered in the first stage were re-entered in a regression equation with the dependent variable. The significance of F values in ANOVA was checked to ensure that at least one variable was a non-zero. In the second stage the multico-linearity was ascertained and linear variables were removed in order to bring the significance of ‘p’ to zero or <0.01.

The regression analysis results into a regression equation as follows-

\[Y = a + b_1X_1 + b_2X_2 + b_3X_3 + b_4X_4 + b_5X_5 + b_6X_6 + b_7X_7 + b_8X_8 + b_9X_9 + b_{10}X_{10} + b_{11}X_{11} + b_{12}X_{12} + b_{13}X_{13} + b_{14}X_{14} + b_{15}X_{15} + b_{16}X_{16} + b_{17}X_{17} + b_{18}X_{18} + b_{19}X_{19} + b_{20}X_{20} + b_{21}X_{21} + b_{22}X_{22} + b_{23}X_{23} + b_{24}X_{24} + b_{25}X_{25} + b_{26}X_{26} + b_{27}X_{27} + b_{28}X_{28} + b_{29}X_{29} + b_{30}X_{30} \]

Where \(Y \) = estimated value of the criterion dependent variable
a = Constant derived from the regression analysis
X₁ = Availability of equipment
X₂ = Working condition of the equipment
X₃ = Clean toilets and drinking water
X₄ = Receive timely funds for equipment and stationery
X₅ = Physical appearance of the office visually appealing
X₆ = Toilets and other amenities provided in the office
X₇ = Availability of books on various acts and rules in the office
X₈ = Sufficient staff available in the office
X₉ = People expect more work from you
X₁₀ = Feeling of work related stress
X₁₁ = Job competency training
X₁₂ = Technical knowledge regarding work
X₁₃ = Sufficient information about newly introduced schemes, services
X₁₄ = Use of modern technology, especially computers
X₁₅ = Training given on recruitment
X₁₆ = Recognition for good work
X₁₇ = Proper training will enable the employees to give better services
X₁₈ = Opinion- training on recruitment
X₁₉ = Experience- training on recruitment
X₂₀ = Opinion about employees to be trained at regular intervals
X₂₂ = Job rotation
X₂₃ = Training for stress management
X₂₄ = Revenue Department training policy
X₂₅ = Existing system of training- efficient and useful
X₂₈ = Satisfaction with your job/ service
X₂₉ = Are you being trained at regular intervals?
X₃₀ = satisfaction with training
b₁ to b₃₀ = contribution of each variable to the dependent variable

6.2.1.4 Regression Analysis for Maharashtra

In the first step the linear multivariate regression analysis was carried out as by entering the variables within each factor as independent variables with job satisfaction as the dependent variable.
Regression of the dependent variable 28 regarding satisfaction with the service/job with the variables entered in the first step of regression analysis resulted into the following equation:

\[
\text{Satisfaction with job} = 0.861 + 0.398 \text{ (Training at regular intervals)} + 0.394 \text{ (Efficient training system)} + 0.131 \text{ (Training for Competency)}
\]

\[
\text{R} = 0.813 \quad \text{R square} = 0.661 \quad \text{sig.} = 0.000 \quad p < 0.01
\]

The R value is a ‘goodness of fit’ indicator and nearer the value of R to 1 better is the fitness of the variables in the equation. The value of R = 0.813 in this equation indicates a good fit of the variables. Beta values for 0.398 Training at regular intervals; 0.394 for efficiency of the training system and 0.131 for Training for job competency suggest that they contribute well to the variable. If the value of the variable is considered as one with all other variables being constant the variable contributes equal to its beta value.

The regression equation reveals that the job satisfaction primarily depends on the training received by the employees and the transfer of learning to the job performance.

Thus on the basis of the results of regression analysis and dependence of variable on job satisfaction on variables related to training the null hypothesis is rejected.

6.2.1.5 Factor Analysis for Rajasthan

Factor analysis of the internal customers’ data from Rajasthan resulted into seven factors. The variables loaded on each factor are different from the factors extracted for Maharashtra. The factors extracted are displayed in the figure 6.4 below.
Figure 6.4- Rajasthan- Factor Analysis- Internal Customers-

- **Satisfaction** .894
 - 29. Training at regular intervals
 - 25. Efficiency of existing training system
 - 28. Job satisfaction

- **Job Related Training** .844
 - 11. Job Related Training
 - 19. Initial training on recruitment

- **Equipment** .862
 - 1. Availability of equipment- fax, Xerox
 - 2. Working condition of equipment
 - 16. Recognition for good work
 - 3. Services and equipment
 - 13. Information about new schemes, technology
 - 9. People expecting more work

- **Information and support** .799
 - 17. Proper training for better services
 - 23. Training for stress management
 - 14. Use of modern technology

- **Customer expectations** .578
 - 20. Training at regular intervals

- **Technology**
 - 24. Training policy for the Department

- **Training at regular Intervals**
 - 22. Training at regular intervals

- **Training Policy**
6.2.1.6 Discussion and Interpretation-

In case of social research the correlation coefficient above .500 is considered to be significant. The correlation matrix in case of Rajasthan shows that independent variables are highly correlated with each other. This indicates that they are not independent of each other and only one or two of them can be used to predict the dependent variable. Regression has been used to eliminate some of the independent variables as all of them are not required. Some of them, being correlated with each other, do not add any value to the regression model (Nargundkar310, 2010). This is the reason why the regression analysis for Rajasthan produced very confusing results. Thus the regression equation of Maharashtra was used for further analysis.

6.2.2 Hypothesis 3

Null Hypothesis H₀ - Customer satisfaction does not have a positive relation with employee training.

Hypothesis 3 - Customer satisfaction has a positive relation with employee training.

6.2.2.1 Employee Training and Customer Satisfaction

Table 6.2 Employee Training versus Customer satisfaction

<table>
<thead>
<tr>
<th>Name of the State</th>
<th>Percentage of Employees Given Initial Training</th>
<th>Percentage of Employees given regular training</th>
<th>Percentage of Satisfied Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maharashtra n=163</td>
<td>49</td>
<td>37</td>
<td>62</td>
</tr>
<tr>
<td>Rajasthan n=160</td>
<td>64</td>
<td>46</td>
<td>82</td>
</tr>
</tbody>
</table>

There appears to be a direct relation between number of trained employees and customer satisfaction. The table above and the graph below show that the percentage of employees given initial or regular training is less in Maharashtra and the customer satisfaction too is less. However the percentage of employees given initial or regular training is more in Rajasthan and the customer satisfaction too is high. There appears to be a proportionate positive relationship between customer satisfaction and employee training.

Graph 6.1 Comparative percentages of Employees Given Training and Satisfaction with Training (on a modified 1-3 scale)

6.2.2.2 Regression Analysis - Results

Regression analysis discussed in the testing of hypothesis 1 resulted into two very clear regression equations for Maharashtra and Rajasthan regarding customer satisfaction:

Maharashtra-

Customer satisfaction = 0.112 + 0.411 (employee knowledge) + 0.349 (modern looking equipment) + 0.227 (prompt service) + 0.213 (provision of information)

R = 0.841 R square = 0.707 sig. = 0.000 p < 0.01

Rajasthan-

Customer satisfaction = 0.249 + 0.367 (Knowledge to answer questions) + 0.318 (Responsiveness of the employees) + 0.099 (Information provided by employees) + 0.174 (Courteousness of employees)

R = 0.928 R square = 0.862 sig. = 0.000 p < 0.01

Both the regression equations show that the customer satisfaction primarily depends on employee knowledge and secondarily on the ability to provide the necessary information to the customers. Training has always been the fastest and most reliable means of improving the knowledge and skills of the employees in a short time. The equations show that even though the tangibles are improved there is no effect on the performance as majority of the contribution is by knowledge and skills of the employees. The tangibles act more or less as hygiene factors to the employees
than contributors to service quality as their provision results in satisfaction (Maharashtra) but non-provision does not result into dissatisfaction (Rajasthan). However training has a direct impact on customer satisfaction and provision of training increases customer satisfaction by increasing the assurance and responsiveness of the employees. Training is discussed in greater depths in the following chapter.

Thus the customer satisfaction is directly dependent on employee training. Hence the null hypothesis is rejected and hypothesis 3 is rejected.

6.3 Objective 3- To find out the relationship between a well defined training policy and employee satisfaction with training.

6.3.1 Hypothesis 4

Null Hypothesis H_0 - Existence of a well designed training policy has no effect on employee satisfaction with training.

Hypothesis 4 - Existence of a well designed training policy has a positive effect on employee satisfaction with training.

6.3.1.1 Discussion and Interpretation

The correlation matrix for internal customers’ data shows that the variables on training are highly correlated with the employee’s satisfaction with the job and training. In case of Rajasthan the variable on training policy shows a strong correlation with job rotation indicating a need for a policy on job rotation along with a training policy.

The regression equation for ‘job satisfaction’ as dependent variable in case of Maharashtra shows that the job satisfaction greatly depends on the training policy.

Maharashtra-
Satisfaction with job or service = $0.816 + 0.398 \, (training \, at \, regular \, intervals) + 0.394 \, (efficiency \, of \, training \, system) + 0.131 \, (Job \, training)$

$R = 0.813 \quad R \, square = 0.661 \quad \text{sig.} = 0.000 \quad p < 0.01$
The job satisfaction is a direct function of training. Quality training is possible only when there is a policy for training. Hence we may conclude that existence of a well designed training policy has a direct effect on employee satisfaction with training.

The null hypothesis is thus rejected.

6.4 Objective 4- To compare the training polices of Rajasthan and Maharashtra.

Table 6.3 Comparison between training policies of Maharashtra and Rajasthan

<table>
<thead>
<tr>
<th></th>
<th>Rajasthan</th>
<th>Maharashtra</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Training Policy</td>
<td>2008 – Vision mission statements, clear guidelines for Head of Departments, Institutional Heads;</td>
<td>2011 – No clear vision mission statements; No clear guidelines for Head of Departments, Institutional Heads</td>
</tr>
<tr>
<td>State Training Institute</td>
<td>HCM, RIPA, Jaipur Established in Jodhpur-1957 (Jaipur-1963)</td>
<td>YASHADA, Pune – 1983 Established as Administrative Staff College-1963</td>
</tr>
<tr>
<td>Other Training Institutes</td>
<td>Patwar Training Institutes- 6 in number, Since 1958 (Patwars)</td>
<td>No such Institute</td>
</tr>
<tr>
<td></td>
<td>All Purpose Revenue Training Institute, Tonk, Since 1958 (Patwars, Inspectors of Land Record, Revenue accountants)</td>
<td>No such Institute</td>
</tr>
<tr>
<td></td>
<td>Revenue Research and Training Institute RRTI, Ajmer- Since 1995-96 (Naib Tahsildars, Tahsildars)</td>
<td>Prabodhinis – Aurangabad (Mahasul) – 1 May 1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amaravati – 7 December 1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paithan Prabodhini – 13 June 1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cater to localized training courses.</td>
</tr>
</tbody>
</table>

The objective is not supported by any specific hypothesis because it is aimed to compare the two training policies and does not intend to prove anything. Neither does the objective try to analyze which policy is better than the other but it only tries to find out the best from both the policies.

A brief comparison between the two training policies is shown above. Details of the training policies are discussed in the following chapters.
6.5 **Objective 5**- To provide guidelines to frame training policy for the employees of Tahsil offices from the State of Maharashtra so as to improve the quality of service provided to the customers.

This objective is also not supported by any hypothesis. This is an attempt to apply the findings of this study to the policy formulation for the Revenue Department of Maharashtra. The details are discussed in the section on recommendations.