Introduction
I INTRODUCTION

The importance of indoor environment has been increasingly recognized over the past 30 years as a focus of exposure to air pollutants. Reduced building ventilation for the purpose of energy conservation and the fact that people spend majority of their time indoors, have increased both the concentration and the duration of exposure to many identified pollutants (Mage, 1984). Rather than a refuge from air pollution, as has generally been believed, specific pollutants may be more concentrated indoors than outdoors, and the indoor environment can provide a unique exposure situation for some pollutants (Samet et al. 1987).

Non-industrial indoor environments, such as homes, offices, schools, and other commercial and public buildings are now recognised as important environments for exposure to air pollutants (Macher, 1987). During the last decade, increasing number of people from non-industrial occupation are reported to be complaining of the symptoms such as sensation of dry mucous membranes and skin, erythema, mental fatigue, headache, high frequency of airway infections and cough, hoarseness, wheezing, itching and unspecific hypersensitivity, nausea and dizziness (WHO, 1983).

The indoor air quality concerns that aspect of the indoor environment which affects human health and has its
components - physical, chemical and biological pollutants (Suess, 1990). Indoor airborne combustion products and radon have received intensive investigation and are becoming well characterized (National Research Council, Board of Toxicology and environmental health hazards, committee on Indoor pollutants; 1981). By contrast, pollutants released by microorganisms (bioaerosols) are yet to receive serious consideration and, therefore, remain poorly known (Burge, 1990).

The term aerobiology, the science of airborne bioparticles was first coined by F.C. Meier in the 1930's. Bioaerosols include matters of plant and animal origin such as pollen grains, fungal spores, viruses, bacteria, actinomycetes, insect scales, animal danders, house dust mites, etc. These bioparticulates have been proved to be potent sources of allergy.

In the present decade, aerobiology is defined as an interdisciplinary science of applied significance which is a synthesis of human, plant and animal pathology, Immunology, upper tract and nasobronchial allergy, skin allergy, ecology, phytogeography, palynology, microbiology, entomology, biometeorology, aerosol physics, etc.

This subject deals with the investigation of airborne organisms, airspora of both indoor and outdoor environments
which are composed of viruses, bacteria, fungal spores, pollen grains, microscopic fragments of plants and animals, small insects, protozoans, etc. The aerobiological pathway includes source, release, take-off, passive transport, deposition and impaction of these organisms (Chanda, 1991).

The role of aerobiology with regard to allergic diseases, phytopathological implications and crop epidemiology has assumed greater significance in tropical countries and is of particular importance in developing countries (Edmonds, 1979).

The study of aerobiology with reference to human health has great implications. The importance of the aerobiological investigations in the pathogenesis of respiratory allergic diseases has been recognized since the earlier days of allergology. An important role in the development of these conditions is attributed to the inhaled airborne allergic elements which are responsible for initiating a sensitization reaction with the accompanying response. In India, about 10% of the population is known to suffer from allergic disorders, which are attributed to several causative agents like pollen, fungal spores, house dust, danders, dust mites, feathers, pollutants and climatic factors (Vishwanath, 1964). Bangalore city, popularly known as the "Garden city of India", has a sizable portion
of residents suffering from allergic disorders. Reports claim that 1.31% of the population suffer from asthma (Asthma Research Society, 1979).

Aerobiology encompasses both indoor (intramural) and outdoor (extramural) environments. Extramural aerobiology is concerned with the outdoor survey of biological material in open spaces. The study of contaminants in a closed system or enclosed spaces like buildings, residences, hospitals, glass houses or industrial environment is known as intramural aerobiology.

In view of the facts stated above, in the present investigation, indoor aerobiological studies of six contrasting environs of Bangalore such as AC & Non-AC office, hospital, library, patient's residence and the residence of a normal individual have been undertaken.

The present intramural aerobiological study aim at characterising the airspora of each site, which will help clinicians in understanding the offending aeroallergens responsible for aggravating allergic symptoms.

The principle objectives of the present investigation are summarized below:

1. To study the characteristic airspora of different environs (AC & Non-AC Office, Residences of patients and normal individuals, Hospital, Library).
2. To correlate trapped airspora with allergic manifestations of the patients.

3. To find out the qualitative and quantitative variation in the airspora of different environs.

4. To study the effect of meteorological parameters on the indoor airspora.

5. To study the variation in seasonal occurrence of airspora.

6. To study the airborne viable fungal spores using Rose Bengal agar media.