LIST OF FIGURES

Figure 1.1: Structure of a face recognition system .. 6
Figure 1.2: 10 subjects in the Yale face database B 24
Figure 1.3: Sample images of a single individual (subject 1) from Yale face database B in front pose divided into five subsets, showing the variability due to illumination .. 25
Figure 1.4: All subjects in the CMU PIE face database 27
Figure 1.5: Subject 1 under varying illumination in CMU PIE face database ... 27
Figure 1.6: All subjects in Extended Yale B face database 28
Figure 1.7: All subjects in Yale face database ... 29
Figure 1.8: Subjects 1 and 2 under different variations from Yale face database ... 29
Figure 1.9: All subjects in AT & T face database 30
Figure 1.10: Subjects 12 and 20 under different variations from AT & T face database .. 30
Figure 2.1: Different appearances of the same face under varying illuminations (from Yale face database B) ... 37
Figure 2.2: Block feature of DCT coefficients and their selection in zigzag pattern ... 44
Figure 2.3: Contrast enhancement using histogram equalization (HE) (a) Original Image; (b) Image after HE; (c) Histogram of image in (a); (d) Histogram of image in (b) ... 49
Figure 2.4: Effect of changing the LFDCT coefficient (a) face image under uniform light; (b) image after multiplying (0,1)th DCT coefficient by 50; (c) image after multiplying (0,1)th DCT coefficient by -50; (d) image after multiplying (1,0)th DCT coefficient by 50; (e) image after multiplying (1,0)th DCT coefficient by -50 …………… 51

Figure 2.5: Illumination normalized images with different C_{resc}: (a) $C_{resc} = 5$; (b) $C_{resc} = 13$; (c) $C_{resc} = 21$; (d) $C_{resc} = 29$; (e) $C_{resc} = 37$; (f) $C_{resc} = 45$ ……………………………………………………….. 52

Figure 2.6: The implementation architecture of the developed technique of illumination normalization (down scaling of LFDCT coefficients with HE) for face recognition ……………………………………… 54

Figure 2.7: Eyes, nose and mouth region of a face image considered for correlation coefficient calculation ……………………………………… 56

Figure 2.8: Performance variation using correlation coefficient between eyes, nose and mouth region with different RDF for (a) k-NNC (b) NMC …………………………………………………………… 58

Figure 2.9: Performance variation using correlation coefficient between full face images with different RDF for (a) k-NNC (b) NMC …………… 59

Figure 2.10: Performance variation using correlation coefficient between eyes, nose and mouth region with different C_{resc} for (a) k-NNC (b) NMC …………………………………………………………… 61

Figure 2.11: Performance variation using correlation coefficient between full face images with different C_{resc} for (a) k-NNC (b) NMC …………… 62

Figure 2.12: Performance variation using PCA with different RDF for (a) k-NNC (b) NMC ……………………………………………….. 65

Figure 2.13: Performance variation using PCA with different C_{resc} for (a) k-NNC (b) NMC ……………………………………………….. 66
Figure 2.14: Performance variation using PCA with number of principal components for (a) k-NNC (b) NMC 68

Figure 3.1: (a) An example image (from Yale B database under non-uniform illumination) with its histogram; (b) after HE; (c) after CLAHE 77

Figure 3.2: The processed image with its histogram after taking logarithm transform on the face image in Figure 3.1(c) 77

Figure 3.3: (a) Test images for enhancement of visual appearance from subset 4 and subset 5 of subject 5; (b) output of HE on test images; (c) output of down scaling of low-frequency DCT coefficients with HE (d) output of down scaling of low-frequency DCT coefficients with CLAHE and logarithm transform 79

Figure 3.4: Block diagram of implementation architecture for illumination normalization using fuzzy filter over LFDCT coefficients 82

Figure 3.5: Linear relation of LFDCT coefficients under illumination variations: (a) sample face images under varying illuminations with one uniformly illuminated image (first image); (b) variation of ratio of LFDCT coefficients of face images under varying illuminations with uniformly illuminated image 84

Figure 3.6: Effect of illumination normalization with different value of LFD; (a) three sample face images under varying illuminations from Yale B database; (b) after HE; (c) $LFD = 21$; (d) $LFD = 78$; (e) $LFD = 171$; (f) $LFD = 300$; (g) $LFD = 465$; (h) $LFD = 666$ 85

Figure 3.7: Performance graph using fuzzy filter with k-NNC_CC_ENM on Yale B database .. 88

Figure 3.8: Performance graph using fuzzy filter with k-NNC_CC_FACE on Yale B database ... 88

Figure 3.9: Performance graph using fuzzy filter with k-NNC_PCA on Yale B database ... 89
Figure 3.10: Performance graph using fuzzy filter with k-NNC_CC_ENM on CMU PIE database ... 89

Figure 3.11: Performance graph using fuzzy filter with k-NNC_CC_FACE on CMU PIE database ... 91

Figure 3.12: Performance graph using fuzzy filter with k-NNC_PCA on CMU PIE database ... 91

Figure 3.13: Performance graph using fuzzy filter with k-NNC_CC_ENM on ExYaleB database ... 93

Figure 3.14: Performance graph using fuzzy filter with k-NNC_CC_FACE on ExYaleB database ... 93

Figure 3.15: Performance graph using fuzzy filter with k-NNC_PCA on ExYaleB database ... 94

Figure 3.16: Performance graph using fuzzy filter with k-NNC_CC_ENM with modifications in training set on ExYaleB database 94

Figure 3.17: Performance graph using fuzzy filter with CLAHE and logarithm transform with k-NNC_PCA on ExYaleB database 95

Figure 3.18: Performance graphs using correlation coefficient based classification on Yale database with varying size of training set; with and without illumination normalization applied on database images ... 97

Figure 3.19: Performance graphs using PCA based classification on Yale database with varying size of training set; with and without illumination normalization applied on database images 97

Figure 4.1: Block diagram of system architecture for fuzzy based feature extraction ... 110

Figure 4.2: π-type membership function used for fuzzification of each face image ... 112
Figure 4.3: Effect of FPIE; (a) input pixel values for nine two-dimensional patterns related to 3-classes problem with their plot on feature space; (b) corresponding membership grades using FPIE with their plot ... 114

Figure 4.4: Effect of FPIE; (a) input pixel values for twelve two-dimensional patterns related to 4-classes problem with their plot on feature space; (b) corresponding membership grades using FPIE with their plot ... 115

Figure 4.5: Performance graphs using k-NNC based upon correlation coefficient on AT&T database with varying size of training set; with and without FPIE applied on database images 117

Figure 4.6: Performance graphs using k-NNC based upon PCA on AT&T database with varying size of training set; with and without FPIE applied on database images .. 118

Figure 5.1: Architecture of single-hidden layer feedforward neural network (a) schematic of interconnection; (b) abbreviated notation 128

Figure 5.2: Percentage error rate variation with parameter c of SLFN_BVOI learning algorithm, for four different size of training set on AT&T face database ... 143

Figure 5.3: Comparison of percentage error rate for BP, ELM and SLFN_BVOI learning algorithms on AT&T face database 143

Figure 5.4: Comparison of percentage error rate for BP, ELM and SLFN_BVOI learning algorithms on Yale face database 146

Figure 5.5: Comparison of percentage error rate for integrated framework on AT&T face database .. 150

Figure 5.6: Comparison of percentage error rate for integrated framework on Yale face database .. 151
LIST OF TABLES

Table 1.1: Subsets of Yale face database B ... 24

Table 2.1: Summary of Implementation Results (without and with the
developed technique of illumination normalization (down scaling
of LFDCT coefficients)) .. 69

Table 2.2: Performance comparison of present technique with other
techniques of illumination normalization on
Yale face database B ... 70

Table 3.1: Correlation coefficients for test images using different schemes 80

Table 3.2: Comparison of percentage error rate using different schemes and
percentage reduction in error rate by fuzzy filter based technique of
illumination normalization on Yale face database 98

Table 3.3: Performance comparison of fuzzy filter based technique of
illumination normalization with other techniques on different
databases ... 100

Table 4.1: Comparison of percentage error rate using different schemes and
percentage reduction in error rate by FPIE on AT&T face
Database ... 119

Table 5.1: Comparison of percentage error rate on AT&T face database
(percentage error rate using BP, ELM and SLFN_BVOI training
algorithms and percentage reduction in error rate by SLFN_BVOI
in comparison to BP and ELM) ... 144

Table 5.2: Comparison of training time (in seconds) on AT&T face database
(training time using BP, ELM and SLFN_BVOI training
algorithms and ratio of training times) 145
Table 5.3: Comparison of percentage error rate on Yale face database (percentage error rate using BP, ELM and SLFN_BVOI training algorithms and percentage reduction in error rate by SLFN_BVOI in comparison to BP and ELM) ... 147

Table 5.4: Comparison of training time (in seconds) on Yale face database (training time using BP, ELM and SLFN_BVOI training algorithms and ratio of training times) 148

Table 5.5: Comparison of percentage error rate on AT&T face database (percentage error rate using integrated framework, k-NNC with correlation coefficient and percentage reduction in error rate by integrated framework in comparison to k-NNC) ... 150

Table 5.6: Comparison of percentage error rate on Yale face database (percentage error rate using integrated framework, k-NNC with correlation coefficient and percentage reduction in error rate by integrated framework in comparison to k-NNC) ... 152