Contents

Abbreviations 1
Synopsis 3
List of figures 19
List of tables 21
Chapter 1 23
 1.1 *Staphylococci* 24
 1.1.1 Manifestation of *S. aureus* infection 25
 1.1.2 Pathogenesis of *S. aureus* 26
 1.1.3 Resistance of *S. aureus* towards antibiotics 27
 1.2 What are peptidases? 29
 1.2.1 Functional significance of proteases 30
 1.2.2 Peptidases in bacterial pathogenesis 31
 1.2.3 Proteases of *S. aureus* 32
 1.3 Metallopeptidases 33
 1.3.1 Family of metallopeptidases 34
 1.3.2 Why study enzymes with respect to M20 family of peptidases 35
 1.3.3 Summary of M20 family of metallopeptidases 36
 1.4 Catalytic mechanism involved in metallopeptidases 38
 1.4.1 Metal sites in metalloproteases 39
 1.4.2 Catalytic mechanisms of metalloproteases 41
 1.4.2.1 Catalytic zinc site with 2His and 1Glu/Asp residue 41
 1.4.2.2 Proteases containing co-catalytic zinc sites 43
 1.4.3 Structural aspect of proteins belonging to M20 family of metallopeptidases 44
 1.4.4 Inhibitor studies involved in M20 classes of metallopeptidases 46
 1.5 Objectives 47
 1.6 Methodology 48
 1.7 Organization of the thesis 49
Chapter 2

2.1 Materials and Methods

2.1.1 Cloning and expression

2.1.1.1 Transformation of pET15b-SACOL0085 plasmid DNA into DH10B cells

2.1.1.2 Isolation of pET15b-SACOL0085 plasmid DNA by alkali lysis method

2.1.1.3 Restriction digestion of SACOL0085 plasmid DNA to check the insert

2.1.1.4 Transformation of pET15b-SACOL0085 plasmid into E.coli- BL21 (DE3) for expression of putative peptidase of interest

2.1.2 Purification by Ni$^{2+}$-NTA affinity chromatography

2.1.3 Summary of purification protocol

2.1.4 Size exclusion chromatography

2.1.5 Protein estimation

2.1.6 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

2.2 Results

2.2.1 Cloning, expression and purification of SACOL0085 putative peptidase belonging to M20 family of metallopeptidases

2.2.2 Preliminary protein analysis

2.2.3 Instability index

2.2.4 Protein purification

2.2.5 Purification by size exclusion chromatography

2.3 Discussion

Chapter 3

3.1 Materials and Methods

3.1.1 Modified cadmium-ninhydrin method

3.1.2 Casein digestion method

3.1.3 Screening for peptidase activity by thin layer chromatography

3.1.4 Metal ion dependency

3.1.5 Effect of divalent cations on enzyme activity
3.1.6 Substrate preferences of the enzyme 74
3.1.7 Determination of temperature and pH optimum 74
3.1.8 pH dependence 74
3.2 Results 75
3.2.1 Establishing the assay system 75
3.2.2 Activity dependence of SACOL0085 peptidase on metal ion cofactors 78
3.2.3 SACOL0085 peptidase activity in presence/absence of EDTA 78
3.2.4 Functional characterization of the SACOL0085 peptidase 79
3.2.5 Purification by size exclusion chromatography 83
3.2.6 Temperature and pH optimum for peptidase activity 84
 3.2.6.1 Time Course of reaction 84
 3.2.6.2 Optimum temperature and thermo stability 84
 3.2.6.3 Optimum pH for SACOL0085 enzyme activity 85
 3.2.6.4 Variation in pH showing selective SACOL0085 activity towards different substrates 86

3.3 Discussion 88

Chapter 4 89
4.1 Materials and Methods 91
 4.1.1 Measurement of SACOL0085 peptidase activity by Cd-ninhydrin method in the presence of divalent metal ion (modified to assess the kinetics) 91
 4.1.2 Effect of divalent cations on SACOL0085 peptidase activity 92
4.2 Results 93
 4.2.1 Speculation of a disulfide bond in the inactive conformation of SACOL0085 purified protein 93
 4.2.2 Calculation of kinetic parameters in the presence and absence of TCEP 97
 4.2.3 Kinetics of the purified peptidase towards three of the best substrate 99
 4.2.4 Metal ion cofactor preferences of SACOL0085 peptidase 100
4.3 Discussion 104
Chapter 5

5.1 Materials and Methods

5.1.1 Analysis of sulfhydryl groups in the SACOL0085 protein by DTNB method

5.1.2 Inhibition studies

5.1.2.1 Inhibition studies with mercury
5.1.2.2 Inhibition studies with iodoacetamide

5.2 Results

5.2.1 Analysis of Cysteine residues
5.2.2 SACOL0085 activity inhibited by cysteine inhibitors

5.2.2.1 Mercuric ions acting as a potent inhibitor
5.2.2.2 Modification by iodoacetamide inhibited SACOL0085 peptidase activity

5.2.2.2.1 Assay with guanidium HCl

5.3 Discussion

Chapter 6

6.1 Materials and Methods

6.1.1 Determination of oligomeric status of SACOL0085 protein

6.1.1.1 Analytical FPLC
6.1.1.2 Dynamic light scattering experiment
6.1.1.3 LC-ESI and MALDI-ESI

6.1.2 Homology modeling
6.1.3 Crystallization trials

6.2 Results

6.2.1 Molecular weight and quaternary structure determination

6.2.1.1 Analytical FPLC
6.2.1.2 Dynamic light scattering experiment
6.2.1.3 LC-MS and MALDI-ESI

6.2.2 Structure modeling and crystallization trials

6.3 Discussion

Conclusions

References

Appendix