LIST OF FIGURES

Figures

1.1 Gyrator circuit and gyrator terminated with the capacitor 4
1.2 Riordan Gyrator circuit ... 5
1.3 Grounded inductor realization using single op-amp Type-I 6
1.4 Grounded inductor using single op-amp-Type II ... 6
1.5 Grounded inductor Simulation using two op-amp ... 7
1.6 Three different ways of forming FDNR from GIC ... 8
1.7 First circuit for realization of FDNR ... 9
1.8 Second circuit for realization of FDNR ... 9
1.9 Circuit for realization of floating inductance with two gyrators connected
 back to back ... 10
2.1 Antoniou inductor simulation circuit using GIC .. 18
2.2 Comparison of experimentally simulated L with theoretical value of L and error
 calibration curve .. 20
2.3 Basic LCR resonator circuit .. 22
2.4 a) Low pass filter b) Low pass filter with simulated L .. 23
2.5 Complete circuit of the low pass filter with simulated L .. 24
2.6 Frequency response of the low pass filter with simulated L 25
2.7 a) High pass filter b) High pass filter with simulated L .. 26
2.8 Complete circuit of High pass filter with simulated L .. 26
2.9 Frequency response of high pass filter with simulated L .. 27
2.10 a) Band pass filter b) Band pass filter with simulated L ... 28
2.11 Complete circuit of band pass filter with simulated L 28
2.12 Frequency response of Band pass filter with simulated L 29
2.13 a) Notch filter b) Notch filter with simulated L 30
2.14 Complete circuit of notch filter with simulated L 31
2.15 Frequency response of notch filter with simulated L 31
3.1 a) Bessel low pass filter b) Bessel low pass filter with simulated L 36
3.2 Complete circuit of the Bessel low pass filter with simulated L 36
3.3 Frequency response of the Bessel low pass filter with simulated L 37
3.4 a) Bessel High pass filter b) Bessel High pass filter with simulated L 38
3.5 Complete circuit of Bessel High pass filter with simulated L 38
3.6 Frequency response of Bessel high pass filter with simulated L 39
3.7 a) Bessel all pass filter b) Bessel all pass filter with simulated L 40
3.8 Complete circuit of Bessel All pass filter with simulated L 40
3.9 Frequency response of Bessel All pass filter with simulated L 41
4.1 a) Symbol of D element b) circuit of D element 46
4.2 a) Basic low pass filter b) Transformed network of basic low pass filter ... 48
4.3 Low pass filter using FDNR-method I .. 49
4.4 Low pass filter using FDNR –method II 49
4.5 Frequency response of low pass filter using FDNR –method I 50
4.6 Frequency response of low pass filter using FDNR –method II 50
4.7 Block diagram for obtaining the Notch filter from band pass filter 51
4.8 Circuit diagram of notch filter ... 53
4.9 Frequency response of notch filter .. 53
5.1 Circuit diagram of single tuned amplifier with simulated L 57
5.2 Frequency response of single tuned amplifier with simulated L 58
5.3 Block diagram of Hartley oscillator with simulated L 59
5.4 Block diagram of Colpitts oscillator with simulated L 60
5.5 Output wave form of Hartley oscillator for 100Hz 61
5.6 Output wave form of Colpitts oscillator for 100Hz 61
5.7 Basic active tuned oscillator ... 62
5.8 Frequency response of band pass filter .. 63
5.9 Band pass filter using simulated L obtained from parallel LCR circuit 64
5.10 Active tuned oscillator circuit using simulated L 65
5.11 Output waveform at point V₁ ... 65
5.12 Output waveform at point V₃ ... 66
5.13 Output waveform at point V₄ ... 67
5.14 a) Sine wave generated showing the settling time for R=50Kohm 68
 b) Sine wave generated showing the settling time for R=200Kohm 68
5.15 a) The sine wave and the frequency spectrum for 50 Kohm 69
 b) The sine wave and the frequency spectrum for 75 Kohm 70
 c) The sine wave and the frequency spectrum for 100 Kohm 70
 d) The sine wave and the frequency spectrum for 125 Kohm 71
 e) The sine wave and the frequency spectrum for 150 Kohm 71
 f) The sine wave and the frequency spectrum for 200 Kohm 72
6.1 Block diagram of class D audio power amplifier 76
6.2 Complete circuit diagram of Class D audio power amplifier with simulated L . . . 78
6.3 Triangular wave input having the amplitude of 4 V, 4 KHz 80
6.4 PWM output at the output of the comparator 80
6.5 Input and output waveform of class D audio power amplifier with some phase difference 81
6.6 Input and amplified output waveform of class D audio power amplifier with no phase difference 81
6.7 Experimental set up of class D audio power amplifier 82
7.1 Basic lossy simulated inductor circuit 86
7.2 Negative resistance circuit 87
7.3 Newly proposed SUJA simulated inductor circuit 88
7.4 High pass filter circuit using the newly proposed SUJA simulated inductor circuit 90
7.5 Frequency response of high pass filter using the newly proposed SUJA simulated inductor circuit 90
7.6 Band pass filter circuit using the newly proposed SUJA simulated inductor circuit 91
7.7 Frequency response of Band pass filter using the newly proposed SUJA simulated inductor circuit 92
7.8 Notch filter circuit obtained using band pass filter using the newly proposed SUJA simulated inductor circuit 93
7.9 Frequency response of notch filter using the newly proposed SUJA simulated inductor circuit 93
7.10 Oscillator circuit using the newly proposed SUJA simulated inductor circuit 95
7.11 Output waveform of the oscillator using the newly proposed SUJA simulated inductor circuit 95
7.12 Circuit diagram of tuned amplifier using the newly proposed SUJA simulated inductor circuit ... 96

7.13 Frequency response of the tuned amplifier using the newly proposed SUJA simulated inductor circuit ... 97