Contents

Abstract i
List of abbreviations ii

Chapter 1 Introduction

1.1 Fundamental principles of Semiconducting photocatalysis 2
1.2 Overview of Photocatalytic materials 3
1.3 Challenge and Opportunities 4
1.4 Nanostructured photocatalysts 6
1.5 Utilization of Solar energy 8
1.6 Future Fuel (energy) - Hydrogen 10
 1.6.1 Principle of Water splitting (Photoelectrochemical and Photocatalytic methods) 13
 1.6.1.1 Brief survey of photocatalytic hydrogen generation via water splitting 15
 1.6.2 Principle of Hydrogen Sulfide (H$_2$S) splitting 16
 1.6.2.1 Why H$_2$S splitting for solar light driven hydrogen production? 17
 1.6.2.2 Brief survey of photocatalytic hydrogen generation via H$_2$S splitting 20
1.7 Selective significant nanomaterials with its properties 20
 1.7.1 Zinc Indium Sulphide (ZnIn$_2$S$_4$) 20
 1.7.2 Nitrogen doped TiO$_2$ (N-doped TiO$_2$) 22
 1.7.3 Fe$_2$O$_3$ 24
1.8 Motivation of the present work 25

References 29
Chapter 2 Fundamental and Experimentation

2.1 Introduction 35

2.2 Synthesis methods 35
 2.2.1 Hydrothermal/solvothermal method 35
 2.2.2 Thermolysis method 38

2.3 Design and fabrication of experimental setup for H₂S splitting 39

2.4 Characterization techniques 41
 2.4.1 X-ray diffraction (XRD) 41
 2.4.2 Scanning electron microscope (SEM) 41
 2.4.3 Transmission Electron Microscope (TEM) 42
 2.4.4 X-ray photoelectron spectroscopy (XPS) 44
 2.4.5 Ultra Violet-Visible Defuse Reflectance Spectroscopy (UV-vis DRS) 45
 2.4.6 Photoluminescence (PL) 45
 2.4.7 Fourier Transform Infrared Spectroscopy (FTIR) 46
 2.4.8 Raman Spectroscopy 48
 2.4.9 Mössbauer Spectroscopy 50
 2.4.10 BET Surface Area Measurement 52
 2.4.11 Thermogravimetric Analysis (TGA/DTA) 53
 2.4.12 Vibrating Sample Magnetometer (VSM) 54
 2.4.13 Gas Chromatography (GC) 55
 2.4.14 Gas Chromatography-Mass Spectroscopy (GC-MS) 55

References 57
Chapter 3 Hierarchical nanostructured ZnIn$_2$S$_4$ for an efficient hydrogen production

3.1 Introduction 58
3.2 Experimental 59
 3.2.1 Optimization of controlled synthesis of ZnIn$_2$S$_4$ nanostructures 59
 3.2.2 Phase formation 62
3.3 Results and discussion 65
 3.3.1 Morphological Study 65
 3.3.2 TEM study 71
 3.3.3 Growth mechanism 73
 3.3.4 Optical study 76
 3.3.5 X-Ray photoelectron Spectroscopy (XPS) analysis 79
 3.3.6 Photocatalytic Activity 80
3.4 Conclusions 83

References 85

Chapter 4 Visible light driven nano-architectured N doped TiO$_2$
for hydrogen production

4.1 Introduction 87
4.2 Experimental 88
 Optimization for controlled synthesis (architecture) of N doped TiO$_2$ 88
4.3 Results and discussion 92
 4.3.1 XRD study 92
 4.3.2 FESEM and TEM studies 93
 4.3.3 Optical Study 96
 4.3.4 XPS analysis 97
Chapter 5 Synthesis of maghemite (hematite) core (shell)-Fe$_2$O$_3$ nanorods for photocatalytic hydrogen generation

5.1 Introduction

5.2 Experimental details
5.2.1 Preparation of ligand
5.2.2 Preparation of Iron complexes
5.2.2 Preparation of Iron Oxide Nanorods

5.3 Results and discussion
5.3.1 Structural study
5.3.2 Optical Study
5.3.3 FTIR-Study of 2'HC ligand and its Fe-complex
5.3.4 Mössbauer spectroscopy study
5.3.5 Raman spectroscopy study
5.3.6 Morphological study
5.3.7 TEM study
5.3.8 Thermogravimetric analysis
5.3.9 Magnetic Properties
5.3.10 Possible mechanism
5.3.11 Photocatalytic activity