NOTATIONS

\(E_1 \)
longitudinal Young’s modulus of lamina

\(\nu_{12} \)
major Poisson’s ratio of lamina

\(E_2 \)
transverse modulus

\(G_{12} \)
Shear modulus

\(Q_{11}, Q_{22}, Q_{12} \text{ and } Q_{66} \)
reduced on-axis stiffnesses

\(S_{11}, S_{22}, S_{12} \text{ and } S_{66} \)
reduced on-axis compliances

\(\sigma_1, \sigma_2 \text{ and } \tau_6 \)
in-plane stress components

\(\varepsilon_1, \varepsilon_2 \text{ and } \varepsilon_6 \)
in-plane strain components

\([T]\)
transformation matrix

\(m, n \)
direction cosines

\([Q]_{1,2}\)
principal stiffnesses matrix

\([Q]_{x,y}\)
transformed stiffnesses matrix

\(u_o, v_o \)
reference plane displacements in x- and y-directions

\(w \)
out-of-plane displacement in the z-direction

\(\alpha_x, \alpha_y \)
Rotations of the x- and y-axes

\(h \)
Total laminate thickness
z_b Co-ordinate of a point B in z-direction

u, v Displacements of a general point in x- and y-directions

z Through-the-thickness coordinate of a general point

$\varepsilon_x, \varepsilon_y$ and γ_{xy} General strain components

$\varepsilon_x^o, \varepsilon_y^o$ and γ_{xy}^o General strain components on the reference plane

κ_x, κ_y and κ_{xy} Curvatures of the laminate

$[Q]_{x,y}^k$ Transformed stiffness matrix of the k^{th} lamina

$[\varepsilon^o]_{x,y}$ Column matrix consisting of reference plane strains

$[k]_{x,y}$ Curvature matrix

$[\sigma]^k_{x,y}$ Matrix containing the stress components of k^{th} lamina

t Layer thickness

N_x^k, N_y^k normal forces per unit length

N_s^k shear force per unit length

M_x^k, M_y^k bending moments per unit length

M_s^k twisting moment per unit length

z_k and z_{k-1} z coordinates of the upper and lower surfaces of layer k.

A_{ij} extensional stiffnesses, or in-plane laminate moduli, relating in-plane loads to in-plane strains
coupling stiffnesses, or in-plane /flexure coupling laminate moduli, relating in-plane loads to curvatures and moments to in-plane strains.

B_{ij}

bending or flexural laminate stiffness relating moments to curvatures

D_{ij}

Residual strains along material co-ordinates

$e_1, e_2 \text{ and } e_6$

Residual strains along general co-ordinates

$e_x, e_y \text{ and } e_{xy}$

Residual strains along material co-ordinates

$[N^{HT}]_{x,y}$

Residual force resultant

$[M^{HT}]_{x,y}$

Residual moment resultant

$[N] and [M]$ total force and moment resultants equal to the respective sums of their mechanical and residual components.

F_{1t} Longitudinal composite tensile strength

F_{2t} Transverse composite tensile strength

F_6 In-plane shear strength

F_{1c} Longitudinal composite compressive strength

F_{2c} Transverse composite compressive strength

FML Fiber Metal Laminate

ARALL Aramid Reinforced ALuminium Laminates

GLARE GLAss REinforced aluminium laminate

CARE CArbon REinforced aluminium laminate

HTCL Hybrid Titanium Composite Laminate (NASA)
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiGr</td>
<td>Titanium Graphite Hybrid Laminate (The Boeing Company)</td>
</tr>
<tr>
<td>CF/PEEK</td>
<td>carbon fiber-reinforced poly-ether-ether-ketone</td>
</tr>
<tr>
<td>GF/PEI</td>
<td>glass fiber-reinforced poly-ether-imide</td>
</tr>
<tr>
<td>CLT</td>
<td>Classical Lamination Theory</td>
</tr>
<tr>
<td>FPF</td>
<td>First Ply Failure</td>
</tr>
<tr>
<td>MPDM</td>
<td>Material Property/stiffness Degradation Methods</td>
</tr>
<tr>
<td>CDM</td>
<td>Continuum Damage Mechanics</td>
</tr>
<tr>
<td>WWFE</td>
<td>World Wide Failure Exercise</td>
</tr>
</tbody>
</table>