Chapter 7

Maximal Semitotal- Point

Domination in Graphs
7.1 Introduction.

A set $D \subseteq V$ of a graph $G = (V, E)$, is a dominating set, if every vertex not in D is adjacent to at least one vertex in D. The domination number $\gamma(G)$ of G, is the minimum cardinality of a dominating set. A dominating set D of a graph G, is called a maximal dominating set, if $V - D$ is not a dominating set of G. The maximal domination number $\gamma_m(G)$ of G, is the minimum cardinality of a maximal dominating set. The maximal domination in graphs was introduced by Kulli and Janaki-ram [46].

A dominating set D of a graph H, is a maximal semitotal-point dominating set of H, if $V(H) - D$ is not a dominating set of H. The maximal semitotal-point dominating domination number $\gamma_{mtp}(G)$ of G, is the minimum cardinality of a maximal semitotal-point dominating dominating set of H.

In this chapter, many bounds on $\gamma_{mtp}(G)$ are obtained in terms of elements of G. The aim in this chapter is to establish maximal domination on semitotal-point graph and express the results in terms of elements of G but not in terms of elements of H.

The following figure shows the formation of $\gamma_m(G)$ and $\gamma_{mtp}(G)$.

91
In G, $|V(G)| = 5$, $|E(G)| = 5$ and $D = \{a, b, c\}$. Therefore, $\gamma_m(G) = |D| = 3$.

In $T_2(G)$, $|V(T_2(G))| = 10$, $|E(T_2(G))| = 15$ and $D' = \{a, b, c, e_2\}$. Therefore, $\gamma_{mtp}(G) = |D'| = 4 = |V(G) - 1|$.

The following theorems are used in the proof of further results.

Theorem 7.A[6]. In a tree T, if every nonpendant vertex is adjacent to at least one pendant vertex then, $\gamma(T) = \gamma_{tp}(T)$.

Theorem 7.B[46]. For any graph G of order p, $\gamma_m(G) = p$ if and only if $G = K_p$.

Theorem 7.C[45]. For any graph G with a pendant vertex

$$\gamma_s(T) = \gamma(T).$$

Remark 7.1. $\gamma_{tp}(G)$ and $\gamma(T_2(G))$ both denote the domination number
7.2 Results

In the following theorem $\gamma_{mtp}(G)$ of some standard graphs are established.

Theorem 7.1 (i) For any complete graph K_p with $p \geq 2$

$$\gamma_{mtp}(K_p) = p + 1 \text{ and } \gamma_{mtp}(K_3) = p.$$

(ii) For any cycle C_p with $p \geq 4$

$$\gamma_{mtp}(C_p) = \left\lceil \frac{p}{2} \right\rceil + 2$$

(iii) For any path P_p with $p \geq 3$

$$\gamma_{mtp}(P_p) = \left\lceil \frac{p}{2} \right\rceil + 1$$

(iv) For any star $K_{1,p-1}$ with $p \geq 2$

$$\gamma_{mtp}(K_{1,p-1}) = 3.$$

In the following theorems the bounds of $\gamma_{mtp}(G)$ are established.

Theorem 7.2 For any graph G of order p, $3 \leq \gamma_{mtp}(G) \leq p + 1$.

Proof. For the lower bound, the smallest possible connected graph that can be considered is $G = K_2$. Then $T_2(G) = C_3$ or K_3 and
\(\gamma_m(C_3) = \gamma_{mtp}(G) = 3 \). Clearly, \(\gamma_{mtp}(G) \geq 3 \).

For the sharpness of the lower bound, let \(D_m = D_1 \cup D_2 \) be the maximal dominating sets of \(G \), where \(D_1 = \{u\} \) such that \(\text{deg}(u) = p - 1 \) and \(D_2 = \{v_i\} \) such that \(\text{deg}(v_i) = 1 \) for \(1 \leq i \leq p - 1 \). Let \(e_1, e_2, \ldots, e_q \) be the edge vertices in \(T_2(G) \). For every edge \(e_i; 1 \leq i \leq q \), there exists an edge vertex \(e_j \) in \(T_2(G) \) and \(N(e_j) = \{u\} \cup \{v_j\} \). Thus \(D_m \cup \{e_j\} \) forms a maximal dominating set of \(T_2(G) \). Hence
\[
\gamma_{mtp}(G) = |D_m \cup \{e_j\}| = |u| + |v_i| + |e_j| = 3.
\]

For the upper bound, let \(D_m = \{v_1, v_2, \ldots, v_n\} \) be a maximal dominating set of \(G \) and \(\{e_1, e_2, \ldots, e_q\} \) be the edge vertices of \(T_2(G) \). The following cases are discussed.

Case 1. Suppose \(\delta(G) = \Delta(G) = p - 1 \). Then \(G = K_p \). By the definition of \(T_2(G) \), \(K_p \subseteq T_2(G) \) and also in \(T_2(G) \) each edge vertex \(e_i; 1 \leq i \leq q \) will form a cycle of length 3. Since \(\gamma_m(K_p) = p \), therefore \(\gamma_{mtp}(G) = |D_m \cup \{e_i\}| = p + 1 \). Thus, \(\gamma_{mtp}(G) = p + 1 \).

Case 2. Suppose \(\delta(G) < \Delta(G) = p - 1 \) and \(\delta(G) \leq \Delta(G) < p - 1 \), then by Case 1, we get \(3 \leq \gamma_{mtp}(G) \leq p \). Thus from these two cases, \(\gamma_{mtp}(G) \leq p + 1 \). The sharpness of the upper bound follows from Case 1.

The following theorem gives the relation between \(\gamma_m(T) \) and \(\gamma_{mtp}(T) \).
Theorem 7.3 For any nontrivial tree T, $\gamma_m(T) \leq \gamma_{mtp}(T)$. The equality holds if every nonpendant vertex is adjacent to at least one pendant vertex of a tree.

Proof. Suppose D_m be the maximal dominating set of T and e_1, e_2, \ldots, e_q be the line vertices in $T_2(T)$.

Let $D_1 = D_m \cup D'_m$, where $D'_m \subset [V(T_2(T)) - V(T)]$. Suppose $v_i \in (D_m \cup D'_m)$ be a vertex not adjacent to any vertex of $[V(T_2(T)) - (D_m \cup D'_m)]$. Thus one can easily verify that $(D_m \cup D'_m)$ is a maximal semitotal-point dominating set $T_2(T)$.

Hence $\gamma_m(T) = |D_m|$

$$\leq |D_m \cup D'_m|$$

$$= |D_1|$$

$$= \gamma_{mtp}(T) .$$

Equality follows from Theorem 7.4.

The following theorem establishes the lower bound on $\gamma_{mtp}(G)$ in terms of vertices and edges of G.

Theorem 7.4 For any (p, q) graph G, $\frac{2q - p(p-3)}{2} \leq \gamma_{mtp}(G)$.

Proof. Let D_m be a maximal dominating set of G and e_1, e_2, \ldots, e_q be the line vertices in $T_2(G)$. By a result in [34], we have

$q \leq pC_2 - [p - \gamma_{mtp}(G)] = \frac{p(p-1)}{2} - p + \gamma_{mtp}(G)$. Thus, the result.
Theorem 7.5 For any graph G of order $p \geq 2$ and maximum degree Δ, $\gamma_{mtp}(G) - p \leq \left\lceil \frac{p}{1+\Delta(G)} \right\rceil$. The equality holds for $G = K_p (\neq K_3)$ for $p \geq 2$ vertices.

Proof. By Theorem 7.2, we have $\gamma_{mtp}(G) \leq p + 1$. Therefore $\gamma_{mtp}(G) - p \leq 1$. Also $\left\lceil \frac{p}{1+\Delta(G)} \right\rceil \leq \gamma(G)$. Since $\gamma(G) \leq \frac{p}{2}$, therefore $\left\lceil \frac{p}{1+\Delta(G)} \right\rceil \leq \frac{p}{2}$. Hence from these two results we get $1 \leq \frac{p}{2}$. Thus $\gamma_{mtp}(G) - p \leq \left\lceil \frac{p}{1+\Delta(G)} \right\rceil$. Equality follows from the result (i) of Theorem 7.1.

Theorem 7.6 For any graph G with $p \geq 2$ vertices, $\gamma_{mtp}(G) \leq p - e + 2$, where e is the number of pendant vertices of G. The equality holds for $K_{1,p}$.

Proof. Let S be the set of all pendant vertices of G with $|S| = e$. For an end vertex $v_i \in S$, the set $D = (V - S) \cup \{v_i\}$ is a maximal dominating set of G. Let $\{e_1, e_2, \cdots, e_q\}$ be the set of line vertices in $T_2(G)$ and every vertex $v_i \in S$ is adjacent to corresponding line vertex $e_i \in T_2(G)$ which is incident in G. Thus $D \cup \{e_i\}$ is a maximal dominating set of $T_2(G)$. Hence

$$\gamma_{mtp}(G) \leq |D \cup \{e_i\}|$$

$$= |(V - S) \cup \{v_i\} \cup \{e_i\}|$$

$$= p - e + 2.$$
The equality follows from the result (iv) of Theorem 7.1.

The relation between $\gamma_m(G)$ and $\gamma_{mtp}(G)$ is obtained in the following theorem.

Theorem 7.7 For any graph $G \neq T$, $\gamma_m(G) + 1 \leq \gamma_{mtp}(G)$. Further, the equality holds for $G = K_p (\neq K_3)$ with $p \geq 2$.

Proof. Since for any graph G, $\gamma_m(G) < \gamma_{mtp}(G)$, therefore $\gamma_m(G) + 1 \leq \gamma_{mtp}(G)$. Equality follows from Theorem 7.2 and result (i) of Theorem 7.1.

Theorem 7.8 For any non trivial tree $T \neq K_{1,p-1}$, $\gamma_{mtp}(T) = s + 1$, where s is the number of cutvertices of G. The bound is attained if and only if every cutvertex is adjacent to at least one pendant vertex.

Proof. Let D_m be a maximal dominating set of $T_2(T)$ and $K = \{c_1, c_2, \cdots, c_s\} \subset V(T)$ be the set of all cutvertices of T with $|K| = s$. Let $\{e_1, e_2, \cdots, e_q\}$ be the set of line vertices in $T_2(T)$. The set K dominates the line vertices in $T_2(T)$. Now consider $X \subset \{e_1, e_2, \cdots, e_q\}$ such that one can find a vertex in $V(T_2(T))$ which is not adjacent to any vertex in $(V(T_2(T)) - D_m)$. Clearly $D_m^{'} = K \cup X$ is a maximal dominating set of $T_2(T)$. Thus
\[\gamma_m(T) \leq |D_m| \]
\[\leq |K \cup X| \]
\[\leq |K| + |X| \]
\[\leq s + 1 \]

Further, assume that there exists a cutvertex \(v_i \in D_m \) which is not adjacent to any pendant vertex in \(T \). Then the cardinality of maximal dominating set of \(T_2(T) \) is at most \(s \), a contradiction. Hence each cutvertex is adjacent to at least one pendant vertex.

The converse is obvious.

Now the upper bound of \(\gamma_{mtp}(G) \) in terms of vertex covering number of \(G \) is obtained.

Theorem 7.9 For any graph \(G \), \(\gamma_{mtp}(G) \leq \alpha_0(G) + 2 \), where \(\alpha_0(G) \) is vertex covering number of \(G \). Further, the equality holds for \(G = K_p (\neq K_3) \) or \(K_{1,p-1} \) with \(p \geq 2 \).

Proof. Let \(X = \{v_1, v_2, \cdots, v_r\} \) be a vertex covering set of \(G \). Then for any vertex \(v_i \in X \) for \(1 \leq i \leq r \), the set \(D_m = (V - X) \cup \{v_i\} \) is a maximal dominating set of \(G \). Let \(\{e_1, e_2, \cdots, e_q\} \) be the edge vertices in \(T_2(G) \) and for any edge set \(E_i \) in \(G \) for \(1 \leq i \leq q \), there exist a vertex \(v_j \in D_m \) such that \(v_j \) is incident with an edge of \(E_i \). Thus one
can easily find at least one line vertex e_i for $1 \leq i \leq q$ which is not adjacent to any vertex of $\{(V \subset T_2(G)) - (D_m \cup \{e_i\})\}$ in $T_2(G)$. Since $\gamma_m(G) \leq \alpha_0(G) + 1$, therefore

$$\gamma_{mtp}(G) \leq |D_m \cup \{e_i\}|$$

$$\leq \gamma_m(G) + |e_i|$$

$$\leq \alpha_0(G) + 1 + 1$$

$$= \alpha_0(G) + 2. \quad \blacksquare$$

The next result gives the relation between $\beta_0(T)$ and $\gamma_{mtp}(G)$.

Theorem 7.10 For any nontrivial tree T, $\gamma_{mtp}(T) \leq \beta_0(T) + 1$, where $\beta_0(T)$ is the independence number of T. Equality holds for P_p with $p \geq 2$ vertices.

Proof. Let X be a maximum independent set of G which is a dominating set of $T_2(T)$. Suppose $S \subseteq X$ be the set of all pendant vertices in $T_2(T)$. Then for a pendant vertex $v_k \in S$, the set $D_m = (V - S) \cup \{v_k\}$ is a maximal dominating set of T and $|D_m| \leq |X|$ such that $v_j \in X_i$ and for a vertex $v_k \in S$ is adjacent to the corresponding line vertex $e_k \in T_2(T)$; $1 \leq k \leq q$. Therefore, $D_m \cup \{e_k\}$ is a maximal dominating set of $T_2(T)$. Hence

$$\gamma_{mtp}(T) \leq |D_m \cup \{e_k\}|$$
\[\leq |X| + |e_k| \]
\[\leq |X| + 1 \]
\[= \beta_0(T) + 1. \]

Equality can be easily verified when \(G \) is a path of length at least two.

Now the relation between the vertex connectivity of \(G \) and \(\gamma_{mtp}(G) \) is established.

Theorem 7.11 For any graph \(G \), \(\kappa(G) + 2 \leq \gamma_{mtp}(G) \), where \(\kappa(G) \) is the vertex connectivity of \(G \).

Proof. The proof follows from the lower bound of Theorem 7.2.

Theorem 7.12 For any graph \(G \), \(\delta(G) + 2 \leq \gamma_{mtp}(G) \). Further, the equality holds for \(G = K_p (\neq K_3) \) with \(p \geq 2 \) vertices.

Proof. Let \(D_m \) be a maximal dominating set of \(G \). Let \(\{e_1, e_2, \cdots, e_q\} \) be a set of edge vertices in \(T_2(G) \) and \(\{v_1, v_2, \cdots, v_p\} \) be a set of point vertices in \(T_2(G) \). Then there exist at least one vertex \(v_i \) which is not in \(D_m \) and the degree of \(v_i' \) of the corresponding vertex of \(T_2(G) \) will be twice the degree of vertex \(v_i \) in \(G \). That is \(deg_{T_2(G)}(v_i') = 2deg_G(v_i) \). Therefore \(deg_{T_2(G)}(v_i') \leq \gamma_{mtp}(G) - 2 \). Since \(\delta(G) \leq deg_G(v_i) \), therefore \(\delta(G) + 2 \leq \gamma_{mtp}(G) \).
For equality, suppose \(G = K_p (\neq K_3) \), for \(p \geq 2 \) vertices. Then \(\gamma_{mtp}(K_p) = p + 1 \) and \(\delta(K_p) = p - 1 \). Hence from these two, the result follows.

\[\]

In the next result a relation between \(\gamma_c(G) \) and \(\gamma_{mtp}(G) \) is established.

Theorem 7.13 For any graph \(G \), \(\gamma_{mtp}(G) \leq \gamma_c(G) + \delta(G) + 1 \). Equality holds for \(K_p (\neq K_3) \) and \(K_{1,p-1} \) with \(p \geq 2 \) vertices.

Proof. Let \(D_c \) be a connected dominating set of \(G \) and \(\{e_1, e_2, \ldots, e_q\} \) be the set of edge vertices in \(T_2(G) \). Let \(v \in V(G) \) be a vertex of minimum degree in \(G \) such that the set \(N(v) \) contains the elements of \(D_c \). Then \(D_m = D_c \cup \{v\} \) forms a maximal dominating set of \(G \). Since the \(\langle D_c \rangle \) is connected, therefore there exists a line vertex \(e_i \in T_2(G) \); \(1 \leq i \leq q \) which is adjacent to the corresponding incident vertices in \(D_c \). Hence \(D_c \) must contain at least one vertex from each edge of \(G \) which are incident to \(e_i \). Clearly

\[
\gamma_{mtp}(G) \leq |D \cup \{e_i\}|
\]

\[
\leq |D \cup \{v\} \cup \{e_i\}|
\]

\[
\leq \gamma_c(G) + \delta(G) + 1.
\]

The equality follows form Theorem 7.7, and from the fact that \(\gamma_c(K_p) = \ldots \)
\[\gamma_c(K_{1,p-1}) = 1 \text{ and } \delta(K_p) = p - 1, \quad \delta(K_{1,p-1}) = 1. \]

The next result gives the relation between \(\gamma_t(G) \) and \(\gamma_{mtp}(G) \).

Theorem 7.14 For any graph \(G \) with maximum degree \(\Delta \), \(\gamma_{mtp}(G) \leq \gamma_t(G) + \Delta(G) \). The equality holds for \(G = K_p \neq K_3 \) for \(p \geq 2 \).

Proof. Let \(D_t \) be a total dominating set of \(G \) and \(v \in D_t \) be a vertex of maximum degree in \(G \). Let \(X \subseteq (V - T) \), where \(T \) is the set of all vertices not adjacent to \(v \in G \). Let \(\{e_1, e_2, \cdots, e_q\} \) be the set of all line vertices in \(T_2(G) \). Then each line vertex is incident with at least one vertex of \(D_t \). Therefore

\[
\gamma_{mtp}(G) \leq |D_t \cup X| = \gamma_t(G) + \deg(v)
\]

Since \(\deg(v) \leq \Delta(G) \), therefore \(\gamma_{mtp}(G) \leq \gamma_t(G) + \Delta(G) \).

Equality follows from Theorem 7.2.

The following theorem establishes the relation between \(\gamma_s(G) \) and \(\gamma_{mtp}(G) \).

Theorem 7.15 For any non trivial tree \(T \), \(\gamma_s(T) \leq \gamma_{mtp}(T) \).

Proof. The result follows from Theorem 7.C, Theorem 7.3 and from the fact that \(\gamma(T) \leq \gamma_m(T) \).
Corollary 7.1. In a tree, if every nonpendant vertex is adjacent to at least one pendant vertex, then

\[(i) \quad \gamma_{mtp}(T) = \gamma_s(T) + 1\]

\[(ii) \quad \gamma_{mtp}(T) = \gamma(T) + 1.\]