Chapter 4

On Chainos Total-ctree Graph of a Graph
4.1 Introduction

A block of a graph is maximal nonseparable subgraph. A block of a graph G is called a pendant block if it contains exactly one cutvertex of G. A block of a graph G is called a nonpendant block if it contains at least two cutvertices of G. If two distinct blocks b_1 and b_2 are incident with a common cutvertex then they are called adjacent blocks. The block degree of a block b of a graph G, is the number of blocks adjacent to it. For a connected graph G with blocks $\{b_i\}$ and cutvertices $\{w_j\}$, the block-cutvertex graph of a graph G, denoted by $bc(G)$, is defined as the graph having vertex set $\{b_i\} \cup \{w_j\}$, with two vertices adjacent if one corresponds to a block $\{b_i\}$ and the other to a cutvertex $\{w_j\}$ and $\{w_j\}$ is in $\{b_i\}$. A nontrivial connected graph G is called a chain if every block is incident with at most two cutvertices of G and every cutvertex is incident with exactly two blocks. In other words a graph is a chain if its block-cutvertex graph $bc(G)$ is a path.

The concept of pathos of a graph G was introduced by Harary [33], as a collection of minimum number of edge-disjoint open paths whose union is G.

On a similar line, the chainos of a graph G was introduced by Basa-
vanagoud et al[9], as a collection of minimum number of block disjoint open chains whose union is G. The chainoslength is the number of blocks which lie on a particular chain C_i of chainos of G. A pendant chainos is a chain C_i of chainos having single block which corresponds to a pendant block in G. The chain number of a graph G is the number of chains in chainos. The chain number of a graph G is equal to k, where $2k$ is the sum of pendantblocks of G and the number of cutvertices incident with odd number of blocks of G.

The cutvertices and blocks of a graph are called its members. If a block is incident with cutvertices $w_1, w_2, \ldots, w_r, \ r \geq 2$, we say that w_i and w_j are coadjacent where $i \neq j, \ 1 \leq i, j \leq r$. The ctree $tc(G)$ of a graph G is the graph whose vertices can be put in one-to-one correspondence with the set of blocks and cutvertices of G in such a way that two vertices of $tc(G)$ are adjacent if and only if the corresponding blocks of G are adjacent or the corresponding members of G are incident[44]. The total-ctree $Tc(G)$ of a graph G is the graph whose vertices can be put in one-to-one correspondence with the set of blocks and cutvertices of G in such a way that two vertices of $Tc(G)$ are adjacent if and only if the corresponding members of G are adjacent, coadjacent or incident[44].
A graph G and its total-ctree are shown in Figure 4.1.

![Diagram of G and Tc(G)](image)

Figure 4.1

The chainos ctree graph $C_{tc}(G)$ of a graph G is the graph whose vertex set is the union of blocks, set of chains of chaions and set of cutvertices of G, in which two vertices are adjacent if and only if the corresponding blocks of G are adjacent and the block lies on the chain of chainos and the blocks are incident to the cutvertex. Here a new class of graphs known as chainos total-ctree graph of a graph is introduced.

The chainos total-ctree graph of a graph G denoted as $C_{Tc}(G)$ is defined as the graph whose vertex set is the union of blocks, set of chains of chaions and set of cutvertices of G, in which two vertices are adjacent if and only if the corresponding members of G are adjacent, coadjacent or incident and the block lies on the chain of chainos. Since the system
of chain of chainos for a graph is not unique, the corresponding chainos total-ctree graph is also not unique. This graph is defined for a graph having at least one cutvertex.

In Figure 4.2, a graph and its different chainos total-ctree graphs $C_{Te}(G)$ are shown.
Figure 4.2
In this chapter, some properties of chainos total-ctree graphs are obtained. Further eulerian and hamiltonian properties of these graphs are investigated. In addition, characterizations of those graphs whose chainos total-ctree graphs are planar, outerplanar and maximal outerplanar are presented. Also, the necessary and sufficient conditions for chainos total-ctree graphs to have crossing number one or two are established.

The following Theorems and observations are necessary in the proofs of further results.

Theorem 4.A[9]. If G is a connected graph with p vertices and b_i is the number of blocks to which the vertex v_i belongs in G, cutvertex w incident with w_j blocks then the chainos ctree graph $C_{tc}(G)$ has $w + k + 1 + \sum (b_i - 1)$ vertices and $1 + \sum \frac{(b_i+2)(b_i-1)}{2} + \sum (w_j)$ edges, where k is the chain number.

Theorem 4.B[9]. The chainos ctree graph of a graph G with $b \geq 1$ blocks is noneulerian.

Theorem 4.C[9]. The chainos ctree graph of a graph G is hamiltonian if and only if every cutvertex of G lies on even number of blocks.

Theorem 4.D[44]. The vertices of total-ctree graph $Tc(G)$ corresponding to a cutvertex and its n incident blocks, generate a subgraph K_{n+1}
of $Tc(G)$. Also the vertices of $Tc(G)$ corresponding to a block and its n incident cutvertices, generate a subgraph K_{n+1} of $Tc(G)$.

Theorem 4.E[44]. The total-ctree graph $Tc(G)$ of a graph G is planar if and only if the following hold:

(i) Every cutvertex of G is incident with at most three blocks.

(ii) Every block of G is incident with at most three cutvertices.

Theorem 4.F[44]. No vertex of $Tc(G)$ of a graph G is a cutvertex.

Theorem 4.G[9]. The chainos ctree $C_{tc}(G)$ of a graph G is planar if and only if every vertex of G is incident with at most three blocks.

Remark 4.1. For any graph G with $b \geq 2$ blocks

(i) $tc(G) \subset Tc(G)$

(ii) $Tc(G) \subset C_{Tc}(G)$

(iii) $C_{tc}(G) \subset C_{Tc}(G)$

Remark 4.2. If the block degree of the nonpendant block b in a graph G is even(odd), then the corresponding vertex in $C_{Tc}(G)$ is of odd(even) degree.

Remark 4.3. If the degree of the pendant block in a graph G is even(odd), then the corresponding vertex in $C_{Tc}(G)$ is even(odd) degree.
Remark 4.4. The degree of the chainos vertex in $C_{T_c}(G)$ is equal to the chainos length of the corresponding chain C_i of chainos of G.

Remark 4.5. Every pendant chainos in a graph G adds one cutvertex to $C_{T_c}(G)$.

Remark 4.6. If a vertex v of $C_{T_c}(G)$ corresponds to a cutvertex w of a graph G, then $deg_{C_{T_c}(G)}v = r + n$, where r is the number of blocks of G containing w and n is the number of cutvertices of G adjacent to v.

4.2 Results

In the following theorem the number of vertices and edges in $C_{T_c}(G)$ are calculated.

Theorem 4.1 If G is a connected graph with p vertices and b_i is the number of blocks to which the vertex v_i belongs in G, cutvertices w incident with w_j blocks and c be the number of coadjacent cutvertices of each block, then chainos total-ctree graph $C_{T_c}(G)$ has $w+k+1+\sum(b_i-1)$ vertices and $1 + \sum \frac{(b_i+2)(b_i-1)}{2} + \sum w_j + \sum \frac{c(c-1)}{2}$ edges, where k is the chainnumber.
Proof. By the definition of $C_{Tc}(G)$, the number of vertices in $C_{Tc}(G)$ is $w + k + 1 + \sum (b_i - 1)$.

By Theorem 4.A, the number of edges in $C_{Tc}(G)$ is $1 + \sum \frac{(b_i+2)(b_i-1)}{2} + \sum w_j$. The number of edges in $C_{Tc}(G)$ is the sum of the edges in $C_{tc}(G)$ and the number of edges of the whole graph formed by coadjacent cutvertices of the each block. Hence the number of edges in $C_{Tc}(G)$ is $1 + \sum \frac{(b_i+2)(b_i-1)}{2} + \sum w_j + \sum \frac{e(e-1)}{2}$.

Theorem 4.2 The number of cutvertices in chainos total-ctree graph $C_{Tc}(G)$ of a graph G is equal to the number of pendant chains of G.

Proof. Consider the following cases:

Case 1. By Theorem 4.F, no vertex of total-ctree graph $Tc(G)$ of a graph G is a cutvertex. Assume all the chains of chainos are of length ≥ 2. Each of the chainosvertex is adjacent to two or more vertices corresponding to the blocks on which it lies. Thus resulting in $C_{Tc}(G)$ in which again no vertex is a cutvertex. Thus $C_{Tc}(G)$ is a block.

Case 2. Suppose G has at least one pendant chain. By Theorem 4.F, no vertex of total-ctree graph $Tc(G)$ of a graph G is a cutvertex. By Case 1, $C_{Tc}(G)$ remains a block for all the chains of length ≥ 2. By Remark 4.5, every pendant chain adds a cutvertex to $C_{Tc}(G)$. Hence the
number of cutvertices in $C_{Tc}(G)$ of G is equal to the number of pendant chains of G.

Theorem 4.3 The chainos total-ctree graph of a graph G with $b \geq 1$ blocks is noneulerian if G contains pendant chainos.

Proof. Let C_i be a pendant chainos of a graph G. Then by the definition of $C_{Tc}(G)$ of a graph G, the degree of the corresponding chainosvertex C_i will be one. Hence $C_{Tc}(G)$ is noneulerian.

Theorem 4.4 The chainos total-ctree $C_{Tc}(G)$ of a graph G is hamiltonian if and only if every cutvertex of G lies on even number of blocks.

Proof. By definition, the number of vertices in chainos total-ctree graph and chainos ctree graph is same. By Theorem 4.C, the chainos ctree graph $C_{tc}(G)$ of a graph G is hamiltonian if and only if every cutvertex of G lies on even number of blocks and by Remark 4.1, $C_{tc}(G)$ is a subgraph of $C_{Tc}(G)$. Hence $C_{Tc}(G)$ has hamiltonian cycle. Thus $C_{Tc}(G)$ is hamiltonian.
4.3 (Non-) Planar Chainos Total-ctree Graphs

In this section characterizations for planarity of chainos total-ctree graphs are obtained.

Theorem 4.5 The chainos total-ctree graph $C_{Tc}(G)$ of a graph G is planar if and only if the following hold:

(i) Every cutvertex of G is incident with at most three blocks.

(ii) Every block of G is incident with at most three cutvertices.

Proof. Suppose $C_{Tc}(G)$ is planar. By Remark 4.1 and Theorem 4.G, (i) holds.

To prove (ii), assume a block B of the graph G which is incident with cutvertices w_1, w_2, \ldots, w_n and $n \geq 4$. By Theorem 4.D, the vertices of $Tc(G)$ corresponding to the block b, w_1, w_2, \ldots, w_n generate K_{n+1} as a subgraph of $Tc(G)$. Clearly K_5 is a subgraph of $Tc(G)$. By Remark 4.1, K_5 is a subgraph of $C_{Tc}(G)$. This contradicts the planarity of $C_{Tc}(G)$.

Thus (ii) holds.

Conversely, suppose G satisfies the given conditions. From condition (i) and Theorem 4.G, $C_{tc}(G)$ is planar and (ii) implies by Theorem 4.D, that the blocks together with incident cutvertices do not generate
subgraphs homeomorphic to $K_{3,3}$ or K_5. This implies $C_{Tc}(G)$ is planar.

A characterization for graphs whose $C_{Tc}(G)$ graphs are outerplanar and maximal outerplanar are established.

Theorem 4.6 The chainos total-ctree graph $C_{Tc}(G)$ of a graph G is outerplanar if and only if G is a chain of length at most two.

Proof. Suppose $C_{Tc}(G)$ is outerplanar. Then clearly $C_{Tc}(G)$ is planar. By Theorem 4.5, every cutvertex of G is incident with at most three blocks and every block of G is incident with at most three cutvertices. Assume that G has a cutvertex incident with three blocks and a block incident with three cutvertices. Then by Theorem 4.4, $Tc(G)$ has two K_4 as subgraphs. By Remark 4.1, $C_{Tc}(G)$ has two K_4 subgraphs. Thus $C_{Tc}(G)$ is nonouterplanar, a contradiction. Hence G must be a chain.

Now, suppose G is a chain of length ≥ 3. In the optimal drawing of $C_{Tc}(G)$, one can easily see that the vertices to the nonpendant block lie in the interior region of $C_{Tc}(G)$. Thus $C_{Tc}(G)$ is nonouterplanar, a contradiction. Thus G must be a chain of length at most two.

Conversely, suppose G is a chain of length at most two. Assume G is a chain of length one. Clearly $C_{Tc}(G)$ is K_2 which is outerplanar.
Assume G is a chain of length two. Clearly $Tc(G)$ is K_3. Since G is a chain of length two, it has only one chain of chainos. The chainos vertex is adjacent to vertices corresponding to the blocks on which it lies, that is in $Tc(G)$, thus forming $C_{Tc}(G)$ which is $K_4 - x$. Hence $C_{Tc}(G)$ is outerplanar.

Theorem 4.7 The chainos total-ctree graph $C_{Tc}(G)$ of a graph G is maximal outerplanar if and only if G is a chain of length two.

Proof. Suppose $C_{Tc}(G)$ of G is maximal outerplanar. By Theorem 4.6, $C_{Tc}(G)$ is outerplanar and G is a chain of length two.

Conversely, suppose G is a chain of length two. The blocks, cutvertices and chains of chainos together form $K_4 - x$ in $C_{Tc}(G)$. Clearly $K_4 - x$ has two nonadjacent vertices whose join alters the outerplanarity of $C_{Tc}(G)$. Hence $C_{Tc}(G)$ is maximal outerplanar.

A criterion for $C_{Tc}(G)$ to be minimally nonouterplanar is established in the following theorem.

Theorem 4.8 Chainos total-ctree graph $C_{Tc}(G)$ of a graph G is minimally nonouterplanar if and only if G is a chain of length three or G has only one cutvertex which is incident with exactly three blocks.
Proof. Suppose $C_{T_c}(G)$ of G is minimally nonouterplanar. Assume a cutvertex v, incident with $n \geq 4$ blocks. Then by Theorem 4.5, $C_{T_c}(G)$ is nonplanar, a contradiction. Hence every cutvertex of G is incident with at most three blocks.

Assume every cutvertex of G is incident with $n < 3$ blocks. Clearly G is a chain. If G is a chain of length > 3, then by Theorem 4.6, $C_{T_c}(G)$ is nonouterplanar, a contradiction. Hence G is a chain of length ≤ 3.

Suppose G is a chain of length ≤ 2. Then by Theorem 4.6, $C_{T_c}(G)$ is outerplanar, a contradiction. Assume G is a chain of length three. In the optimal drawing of $C_{T_c}(G)$ the vertices corresponding to the cutvertices, blocks and the chainosvertex form a wheel in $C_{T_c}(G)$. Thus $C_{T_c}(G)$ is minimally nonouterplanar.

Assume two cutvertices u and v of G such that u is incident with exactly three blocks of G and v is incident with exactly two blocks of G. In the optimal drawing of $C_{T_c}(G)$, we observe that the vertices corresponding to the cutvertices, blocks and the chainosvertex form K_4 and a wheel as subgraphs of $C_{T_c}(G)$. Clearly $i[C_{T_c}(G)] \geq 2$, a contradiction.

Assume G has two cutvertices u_1 and v_1 each of which is incident with three blocks. By Theorem 4.4, $T_c(G)$ has two K_4 as subgraphs.
By Remark 4.1, $C_{Tc}(G)$ has two K_4 subgraphs. Clearly $i[C_{Tc}(G)] \geq 2$, a contradiction. Hence G must have only one cutvertex incident with exactly three blocks.

Conversely, suppose G is a chain of length three or G has only one cutvertex incident with exactly three blocks. If G is a chain of length three, then $C_{Tc}(G)$ is a wheel. Clearly $i[C_{Tc}(G)] = 1$. If G has only one cutvertex which is incident with exactly three cutvertices, then by Theorem 4.4, $Tc(G)$ has K_4 as a subgraph. By Remark 4.1, $C_{Tc}(G)$ has K_4 as a subgraph. Also by definition of chainos, G has two chains C_1 and C_2 of length 2 and 1 respectively. By the definition of $C_{Tc}(G)$, the chainosvertex C_1 is adjacent with two vertices and the chainosvertex C_2 is adjacent to only one vertex of $Tc(G)$. Thus K_4 remains a subgraph of $C_{Tc}(G)$. Hence $i[C_{Tc}(G)] = 1$.

4.4 Characterization of $C_{Tc}(G)$ with Crossing Number One or Two

Theorem 4.9 The chainos total-ctree graph $C_{Tc}(G)$ of a graph G has crossing number one if and only if either of the following condition holds:

(i) Every cutvertex of G is incident with at most three blocks and ev-
Every block is incident with four cutvertices with a unique block incident with four cutvertices.

(ii) Every block of \(G \) is incident with at most three cutvertices and every cutvertex is incident with at most four blocks with a unique cutvertex incident with four blocks.

Proof. Suppose \(C_{Tc}(G) \) of \(G \) has crossing number one. Assume that a cutvertex of \(G \) is incident with \(n \geq 3 \) blocks and a block incident with \(m > 4 \) cutvertices.

The following cases are discussed.

Case 1. Suppose \(G \) has a cutvertex \(u \) incident with four blocks and a block incident with five cutvertices. By Theorem 4.D, the cutvertex \(u \) incident with four blocks form \(\langle K_5 \rangle \) and the block incident with five cutvertices form \(\langle K_6 \rangle \) in \(Tc(G) \). By Remark 4.1, \(C_{Tc}(G) \) has \(\langle K_5 \rangle \) and \(\langle K_6 \rangle \) as subgraphs. Hence \(cr[C_{Tc}(G)] > 1 \), a contradiction.

Case 2. Suppose \(G \) has at least two blocks each of which is incident with four cutvertices. By Theorem 4.D, \(Tc(G) \) contains at least two subgraphs as \(\langle K_5 \rangle \). By Remark 4.1, \(C_{Tc}(G) \) has at least two \(\langle K_5 \rangle \) as subgraphs. Clearly \(cr[C_{Tc}(G)] \geq 2 \), a contradiction.

To prove (ii), assume a block of \(G \) which is incident with \(n > 3 \)
cutvertices and a cutvertex is incident with $m > 4$ blocks.

The following cases:

Case 1. Suppose G has a block incident with four cutvertices and a cutvertex incident with five blocks. By Theorem 4.4 the block with its four incident cutvertices form $\langle K_5 \rangle$ and the cutvertex incident with five cutvertex form $\langle K_6 \rangle$ in $Tc(G)$. By Remark 4.1, $C_{Tc}(G)$ has $\langle K_5 \rangle$ and $\langle K_6 \rangle$ as subgraphs. Hence $cr[C_{Tc}(G)] > 1$, a contradiction.

Case 2. Suppose G has at least two blocks each of which is incident with four cutvertices. By Theorem 4.4, $Tc(G)$ contains at least two subgraphs as $\langle K_5 \rangle$. By Remark 4.1, $C_{Tc}(G)$ has at least two $\langle K_5 \rangle$ as subgraphs. Clearly $cr[C_{Tc}(G)] > 1$, a contradiction.

Conversely, suppose G holds both the conditions of the theorem. Then by necessity the result follows.

Theorem 4.10 The chainos total-ctree graph of a graph G has crossing number two if and only if either of the following conditions hold:

(i) G has exactly two cutvertices, each of which is incident with exactly four blocks with any other cutvertex of G is incident with at most three blocks and every block is incident with at most three cutvertices.

(ii) G has exactly two blocks, each of which is incident with exactly
four cutvertices with any other block of \(G \) is incident with at most three cutvertices and every cutvertex of \(G \) is incident with at most three blocks.

Proof. Suppose the chainos total-ctree graph \(C_{Tc}(G) \) of a graph \(G \) has crossing number two. To prove \((i)\) we discuss the following cases:

Case 1. Assume \(G \) has a cutvertex \(v \) incident with five blocks and a block incident with four cutvertices. Then by Theorem 4.D, the points of \(Tc(G) \) corresponding to the cutvertex \(v \) with its \(n \) incident blocks and the block with its \(n \) incident cutvertices form a complete graph \(K_{n+1} \) of \(Tc(G) \). This implies \(Tc(G) \) has \((K_5 \text{ and } K_6)\) as subgraphs. Since \(cr(K_{n+1}) \geq 3\); for \(n \geq 5 \) and by Remark 4.1, \(C_{Tc}(G) \) has \(K_5 \) and \(K_6 \) as subgraphs. Clearly \(cr(C_{Tc}(G)) \geq 3 \), a contradiction.

Case 2. Assume \(G \) has at least three cutvertices each of which is incident with four blocks. Then by Theorem 4.D, \(Tc(G) \) has at least three \(K_5 \) as subgraphs. By Remark 4.1, \(C_{Tc}(G) \) has at least three \(K_5 \) as a subgraphs. Clearly \(cr(C_{Tc}(G)) \geq 3 \), a contradiction.

In each of the above cases we have a contradiction and from Case 1 and Case 2 we conclude that condition \((i)\) holds.

To prove \((ii)\) the following cases arise.

Case 1. Assume \(G \) has a block incident with five cutvertices and a
cutvertex incident with four blocks. Then by Theorem 4.D, the vertices of $Tc(G)$ corresponding to the block with its n incident cutvertices and the cutvertex with its n incident blocks form a complete subgraph K_{n+1} as subgraphs of $Tc(G)$. This implies $Tc(G)$ has (K_5 and K_6) as subgraphs. Since $cr(K_{n+1}) > 2$; therefore $cr(C_{Tc}(G)) > 2$, a contradiction.

Case 2. Assume G has at least three blocks each of which is incident with four cutvertices. Then by Theorem 4.D, $Tc(G)$ has at least three K_5 as subgraphs. By Remark 4.1, $C_{Tc}(G)$ has at least three K_5 as a subgraphs. Clearly $cr(C_{Tc}(G)) \geq 3$, a contradiction.

In each of the above cases we have a contradiction and from Case 1 and Case 2 we conclude that the condition (ii) holds.

Conversely, G satisfies either of the conditions (i) or (ii). Then by Theorem 4.D and Remark 4.1, $C_{Tc}(G)$ has exactly two subgraphs homeomorphic to K_5 and other remaining subgraphs are either K_3 or K_4. Clearly $C_{Tc}(G)$ has exactly two crossings.