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Chapter &

RTERIOR SCHWARZSCH URPAC

1. Xngxcduction

Several authors fncluding Thompson & Whitrow (1967),
Bonner ard Faulks (1967), NeVitte {1967), Taub (1968), Bondi(1969)
have investigated shear free collapse of gravitating spheres
with uniform density. It was shown some time ago (Krishna Rao,
1973) that for all these uniform density models the energy
density of the free gra\rl.ta‘uonnl. field takes a simple form,
bre o3

wvis. = Const, and If c vanishes, the solutions are

conformally flat. For a ¢given spherical configuraytion of matter
Raychaudhuri’s equation shows that it is the slowost collapse
possible. One can caslily obtain many fnequivalent amalytic
solutions of the Linstein fleld equations for a siisar free
collapse of a spherical system since the number of unknown
metric functions can be reduced from threo to one. It is well
known shat shear free solution of Einstein egquation could

be generated by sovlving s single sccoml order non-iinear
equation containing an arbitrary function of a radial
coordinate. Hore, in thia Chapr.cr) we shall show that for the
case wWith shear the solutionsare generated by solving a single
second order nan-linear differential equation contalning an
arbltrary function of the time-coordinate and that shear causes
rapid collapse of the system, This fact can aluo be seen

from Rayochaudhuri's equation. Furthar, as mentioned in the
previous Chapter thne charactersesstio f‘satqre of the system

with shoar dolag the presaice of gravitationul radiation and
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since the solution is matching with that of Schwarsschild
sxtexrior we can asay that the gravitational radiation emitted
by this syatem is being trapped in its snvelepes., Noh-
uniform models weore discussed by Paulkes (1969) and

recently Glass (1979) has inveatigated shear free cGllapse

and gave asome solutions.

In this Chapter we shall show that under sonme
conditions gravitational collapae with sheoar will proceed
not tovward a final equilibrium but to a state of continuing
collapse. 50 the matter will be enclosed by the Schwarsschild
surface from the interior of which no light ray or other
signal can escape, It is well known that in tho Schwarsschilad
sxterior unetric, 1ight rays emitted from the region R < 2%
remain confined to this region anxi cannot escape to infinity.
This fact was clearly exhibited in the Kruskal (1960) diagrmm
of the Schwarsachild metric where radial light rays follow
is. lines of the coordinate systen., We know that the
surface R =» 2 1in the Schwarzechild metric Ls associated
with an infinite red shift from objects falling in amd
Ainfact this i¢ not a physical singularity. So by the choloe
of an approprinte coordinate system this singularity can
be avoided, For, Iif we choose an orthon&?nl frome and
calculate ithe curvature couponents they are siuply multiples
of N/R, and therefore are finite at R = 24, Since the

SchiAwaraschild coordinate system covers only a part of




Kruskal'!s coordinate systom the lator can be regarded

as moxre general in which we have two distinot singularities

r = 03 one in the past and the olher in future. There are

R

two distinct R =saM surfacop:ths u = 0 consiats of outgoing

A S

radial 1ight rays and 1lies in the future of a typlical

ohserver in the Schwarzschild R ¥ quadrant while the other

Va0 consists of ingoing light rays and lies in the past.
Also we can see in this coordinate system the world line
R = Conat < 24 appears as a hyperbola, aml the curve

R = Const < 24 i8 a spacellike curve, In fact, the upper

half of the Kruskal diagram can bs regarded as a black-hols
while the lover. half as a White hole, since any test-
particle in the upper half plans will go to r = O while

in the lower half plans it will rebound. And also one

can infer from the Kruskal diagram (see Misner ; 1968)

that not only freely falling particles but also test
particles with acceleration, once they reach R < ZN cannot
escape hitting the r = 0 singularity. That$ is, in this

region gravity 1s the strongest force than any other.
2. The } o th d on

In this Chapter we discuss analogeous
"Schwarsschild surfaces” in the interior of a spherecally
symnetric moving fluids. So, we consider the expression

for the interval in the form

(4-2.1) dat = - £ . R (da?- dxt)
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Now, Eiustein's field equationa give the
following expressions for the non.vanighirg components

of the stress snergy tensor i
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Assuming that pressure is anisotropic, we have in the
case of the most general definite scheme, the enorgy

momentum tensor

(4=2.6) 'l': - ?tu“ub . i:-__\"(&) ys“*) yi«)®

wvhere n is the unit velocity vector of the fluid particles,
and { the proper material energy density p,_ are the proper
partial pressures and ':-L) are threce spaco-like vectors

(see Lichnerowics s 1933). So, ¥e have for our case

1 2

s - p Ta-'rjal

(}"‘20 7) T‘ o 3 - pe

--pﬂ.r::-fud‘r,:-o

sinoce 'r,: w O the equation (#-2.5) gives immediately

2
(4=-2.8) o = h:'

R

Now, using (4-2.8), the field equations (4~2,2) so (bh-2.h)
with the help of (4-2.7) turn out to be three independent

equations

L™ .ﬁi
1 1 2R R 3
r 1 nz R 2 5
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3. The Solution with Equation of State [ = Pg = Py

Now, we assume that the tranaverse pressure
‘ devaity P
Pe and the material energy , arﬁ equal glving the

differential equation

(4-3.1) ie (1 -%Rz) R = 0

Integrating (4=3.1) with respect to r, we get
.y n’

(4=3.2) R - = ¢ R = F(t)

F(t) being arbitrary. Let us consider the omse with
P(t) = O. That is,

’

SR,
(b=3.3) R - Pi # R = 0



which can be regarded as the ordinary diffarential
squation for a soft spring oscillator. The first ingegral
of (4<3.3) 1is given by

Br)

1
RE 2

(h"3o “) uz 2 -
= (R/h 1)

This equation expresses the energy conservation law with

2 g* R®
1 (“/h ~ 1) as the total energy of the system, 3 (-zi'n.)
<

being the kinetioc energy and ‘/Rz the potential energy.

Prom the field equations we immediately obtain the value

for ;A as

-2
(4-3.5) ;A - [1 + tfa--s-a-n-( £e &_) Rz] (Rt)
-\ g%
Slnoe from (4-2,11%) ¢ = o—0p), Ve can obtain the expression
. "R'

for the potential energy of the system

§-%3.6 E(r) T 2 M

( 3 ) ;_2__ - ;... ( P*&) R = /R
where

(4-3.7) Ha 37 (Pec)nd




Rewriting the equation (4-3.4)

(5-3.8) - % XLl (2
2 R R a

we get an analogous equation for R as a function of ¢
whose solutions ars well known for a fixed shell of matter
A, for which the mass M and [ are constants in the
pressure free case. S0 we find that for anisosropic pressure
cane also, as in the pressure free case, each shell of
matter moves independently of the othor shells inside or
outside of it. Its motion, described by giving its
circumsference as a function of its proper time, is exactly
the ssme as that of a test particle in the Schwarsschild ;"
field of a mass M(A), equal to the mass enclosed by the
shell in question. If initial conditions are specified

for all shells, equation {(4-3.7) can be solved for each A.

k., Gener roper of th

i To find an implicit solution of equation

(b=3.4) we write it in the integral form

(b-4,1) dR
[ -af-ay)’? =2

We now plot a phase portrait taking R on the y-axis and

R on the X-axis for all constant £ 0. Then the xy-plane




is called the phase space for the equation (4-3.4).

To make g phase portrait, first we have to find a constant
solution of the equation (4-3.4). If we put R w C then
R« 0, il =0 the resulting algebraic squation 2¢ =~ CJ = O
shows that R= 0, R=JZ, RE= =[2 are conatant solutions
in the phase plans y = R, Graphically, one can depict the
constant solutions by plotsing the points (0,0), ( [/2,0)
(_-J'i',o). These points are éaliod critical points. The next
step in the construction of the phase portiant is to plot

esach one of the curves

I
R° a =R2+R s 2£, IR «J2
&

that bas a critiJonJ. point on it. If R w O, then R w O
then E = 0 and we must plot 7 .- Rz(l-Rz/f#). \R1 ¢ ]2 ,
The only point satiefying these conditions is the critical
point (0,0)s If R w « {2 and R w O then X = %2 and

we must plot &2 . (J_ .J% )z for IR\% /2. Suppose the

system is put to motion with initial condition R = Ro
amd R = Ry Whith 6&&.‘.:\1,.?3_

2 2 R
and let R = @#(t), R = ¢(t) denote correspomiing solutions
of the equation (4=3.3). If we plot this solution
parame trioanlly, its trace will be a closed curve which

corresporxds to a periodic motion of the system, The period




of motion can be found with the aid of equation (4-4,1)

and ve oan see that the period of oscillation depends

on the total energy of the system gnd hence on the anmplitude.
Such dependence is charscterstic of nonlinear operators,

In linear osclllators amplitude amxi peried are completely
independent, Since the system is in adiabatic wotion, we

can say convective and pul.?rsigtznal instabilities do not

oocur (see Moore and BplogalL). The energy density of the

free gravitational field for this system take: the form

68 wial
Rz R R!

*

(b-h.)) SIWe = “2L1 * /R'

1 R -
R R

e _.J

ard the shear invariant 5 is given LY

L} -

1 R -2 R

R R
[~

so that the relation connecting the shear invariant, and
the cnergy density of the free gravitational field ¢ 1is

given by

(4=4.4) BW(:--_‘z('Iol.lu“)dvu-a’-E_

R R

L.e8. if the syate:x is shear free then 80c «

-
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an analogus expreasion for an isotherual gas sphere
with the eqhation of state p = £ ., For this system the

expression © and gcceleration A are given by

R R
(-h3) 0w 3 [ /7, /a]

He shall novw assuwe that for = - ro the stress

energy tonsor vanished that is (= Pp ™ Pg =Py = 0 and

construct a solutisn of the flield equations in a coordinate
sys tom which is an extension of thao coordinate system used
here, 3ince the density and pressure are both required te
vanish 4t follows that M wust be a constant eay M .

Then from Pr(ro.t) = 0 we have

2 2
(4=3.1) Ho.u .3
z* z? b

We may verify that the constant Ib which snters inte

» “ E
oequation nz * Rz -f. - 33(3') as R-"b is the
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gravitational mass as measured by an external observer by

showing that hov the line element given by the equation

d-z = o') dtz- e;\clr2 - az d.mz may be transfered into

Schwarzschild ono. In fact oukr interior lino dement
N .
482 « - o dar® - R? (a n?. dﬁ can be transfored into

Sohwarsschild exterior metric

(b-5.3) dn-(1 -f_!)&.“"f S C T N
R

whaere
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