Table of Contents

Acknowledgements
List of tables
List of Figures
List of symbols and Abbreviation
Abstract
Chapter 1. Introduction and Literature Review ...17

1.1. Biological importance of Quinazolin nucleus in the new millennium
1.1.1 Recent Progress in Quinazolin activity
1.1.2 Biological importance of Quinazolin nucleus
1.1.2.1 Quinazolin-4(3H) Ones as analgesic and anti-inflammatory activity
1.1.2.2 Quinazolin-4-One Derivatives as Potential Antitubercular Agents
1.1.2.3 Quinazolinones as antioxidant
1.1.2.4 Anticancer activity
1.1.2.5 Antimalarial Activity
1.1.2.6 Antiviral and cytotoxic activities
1.1.2.7 C.N.S Activity
1.1.2.8 References

Chapter 2. Substituted Quinazoline Derivatives: Synthesis and Antimicrobial evaluation65

2.1 Introduction
2.2 Material and Methods
2.3 Synthesis of quinazolinone derivatives
2.3.1 General procedure
2.4 Antibacterial activity
2.5 Results and Discussion
2.6 Conclusion
2.7 References

Chapter 3 QSAR Studies of Synthesized Quinazoline Derivatives78

3.1 Molecular Modeling
3.2 Generation of Molecular Descriptors
3.3 Statistical analysis
3.4 Results and Discussion
3.5 Conclusions
3.6 References

Chapter 4 Conversion of the prepared compound to surfactants90

4.1 Introduction to surfactant
4.2 Experimental Work
4.2.1 Conversion of the prepared compounds to nonionic surfactants
4.2.2 Determination of physical properties
4.2.2.1 Surface and interfacial tension
4.2.2.2 Cloud point
4.2.2.3 Wetting time
4.2.2.4 Foaming properties
4.2.2.5 Emulsification stability
4.2.2.6 Determination of Critical Micelle Concentration (CMC)
4.3 Biological activity
4.4 Result and Discussion
4.4.1 Surface active properties
4.4.1.1 Surface tension
4.4.1.2 Cloud point
4.4.1.3 Wetting time
4.4.1.4 Foam power
4.4.1.5 Emulsion stability
4.4.1.6 Critical Micelle Concentration
4.5 Biological activity
4.6 Conclusion
4.7 References

Chapter 5. Past progress, Current Status and Future prospects of Transdermal Drug Delivery …101

5.1 Introduction
5.2 Rationale for transdermal drug delivery
 5.2.1 Advantages and drawbacks of transdermal drug delivery
 5.2.2 Innovations in transdermal drug delivery
5.3 Percutaneous Absorption
 5.3.1 Human skin
 5.3.1.1 Structure and functions of skin
 5.3.1.2 The epidermis
 5.3.1.3 The dermis
 5.3.1.4 Routes of drug permeation across the skin
 5.3.1.5 Barrier function of the skin
 5.3.1.6 Enhancing transdermal drug delivery
 5.3.1.7 Chemical approach
 5.3.1.8 Physical approach
 5.3.1.9 Selection of drug candidates for transdermal drug delivery
5.4 Biological properties of the drug
 5.4.1 Potency
 5.4.2 Half-life
 5.4.3 Toxicity
5.5 Physicochemical properties of the drug
 5.5.1 Oil-water partition co-efficient
 5.5.2 Solubility and molecular dimensions
 5.5.3 Polarity and charge
5.6 Mathematical principles in diffusion
 5.6.1 Fickian model
 5.6.1.1 Fick's first law of diffusion
 5.6.1.2 Fick's second law of diffusion
5.7 Methods for studying percutaneous absorption
 5.7.1 Diffusion cell design
 5.7.2 Franz and modified Franz diffusion cell
5.8 Dermatological formulation
 5.8.1 Formulation of dermatological products
 5.8.2 Gels
5.9 Excipients
 5.9.1 Gelling agents
 5.9.2 Triethanolamine
 5.9.3 Propylene glycol
 5.9.4 Ethanol
 5.9.5 Peppermint oil
5.10 References

Chapter 6 Drug Monograph ……………………………………………………………………………… 141

6.1 Physicochemical properties
 6.1.1 Description
 6.1.2 Melting point
 6.1.3 Solubility
 6.1.4 Maximum flux
 6.1.5 Partition co-efficient
 6.1.6 Stability
 6.1.7 Ultraviolet absorption
 6.1.8 Infrared spectrum
 6.1.9 Mass Spectrometric
6.2 Development of an UltraViolet spectrophotometer method for determination of Drug
 6.2.1 Principles of ultraviolet-visible absorption spectroscopy
6.2.2 Experimental
 6.2.2.1 Instrumentation
 6.2.2.2 Preparation of stock solutions
 6.2.2.3 Optimization of spectrophotometric conditions
 6.2.2.4 Ultraviolet detection
 6.2.2.5 Concentration of solute
 6.2.2.6 Spectrophotometric conditions
 6.2.2.7 Linearity and range

6.3 Conclusion

6.4 References

Chapter 7 Formulation and Evaluation of a Gel .. 151

7.1 Introduction
7.2 Proposed design
7.3 Preparation of extemporaneous topical gel formulations
7.4 Physical characterization of topical gel formulations
 7.4.1 Physical Appearance
 7.4.2 Homogeneity
 7.4.3 Drug content
 7.4.4 pH
 7.4.5 Drug-Polymer Interaction Study
 7.4.6 Viscosity
 7.4.7 Spreadibility
 7.4.8 Skin irritation test
7.5 In vitro antimicrobial activity
7.6 Stability Studies
7.8 Result & Discussion
7.9 Conclusion
7.10 References

Chapter 8 Diffusion Profiles of topical gel (semipermeable membrane) 162

8.1 In vitro dissolution studies
8.2 Results & Discussion
8.3 Conclusion

Chapter 9 Permeation Profile of topical gel (Human Cadaver Skin) 170

9.1 Preparation of Human Skin
9.2 Model Drug and Donor Vehicles
9.3 Permeation Experiments
9.4 Data analysis
9.5 Result & Discussion
9.6 Comparison of diffusion studies of drug between semi permeable and human skin
9.8 Conclusion
9.10 References

Chapter 10 Prediction of Human Skin Permeability using Artificial Neural Network 188

10.1 Introduction
10.2 Material and Method
10.3 Data set
10.4 Result & Discussion
10.5 Dependence of skin permeability on the descriptors
10.6 Discussion
10.8 Conclusion
10.9 References