LIST OF FIGURES

Figure 1.1 Structural arrangement of a metal building system------005
Figure 1.2 Roof rafters and column sections ------007
Figure 1.3 Different types of Rigid/ Main frames ------008
Figure 1.4 Knee types of the main frames ------010
Figure 1.5 Rafter Splices with End plates ------010
Figure 1.6 Connection of interior columns to the rafters in multispans mainframes ------010
Figure 1.7 Rigid Frame’s (Main Frames) Moment Resisting ability ------012
Figure 1.8 Post and Beam Frame ------012
Figure 1.9 Typical Eave strut ------013
Figure 1.10 Secondary Member Cross sections ------015
Figure 1.11 Purlin lateral displacements due to lateral buckling (In the absence of purlin bridging) ------017
Figure 1.12 Purlin lateral displacements when purlin braces spaced at one-quarter points of the span ------017
Figure 1.13 Purlin Bridging at the inner flange locations of Purlins ------018
Figure 1.14 Purlin Bridging at the outer and inner flange locations of purlins ------019
Figure 1.15 Details of End wall girt bracing at inner flanges of girts. ------021
Figure 1.16 Details of side wall girt bracing at inner flanges of girts

Figure 1.17 Details of end wall girt bracing at outer and inner flanges of girts

Figure 1.18 Details of side wall girt bracing at outer and inner flanges of girts.

Figure 1.19 Stressed skin action (Diaphragm action)

Figure 1.20 Typical bracing locations

Figure 1.21 Typical end wall bracing locations

Figure 1.22 Typical rod and cable brace details

Figure 1.23 Fixed base column details

Figure 1.24 Side wall bracing system by means of portal frames

Figure 1.25 Brace to interior main frame

Figure 1.26 Details of single sided flange brace

Figure 1.27 Details of double sided flange brace

Figure 1.28 Details of flange braces connected to inside flanges of rafters/ columns

Figure 1.29 Details of metal roof panels (Through fastened type)

Figure 1.30 Framed opening Structural details

Figure 1.31 Crane –Tie plate and kicker details

Figure 1.32 Details illustrating the deck panel and its connectivity’s
Figure 1.33 Mezzanine joist and deck details

Figure 2.1 (Buckling Modes)- Local, Lateral and distortional buckling

Figure 2.2 Generalized Beam Behavior

Figure 2.3 Relative bracing system

Figure 2.4 Nodal bracing system

Figure 2.5 Buckled beam geometry

Figure 2.6 Buckled shaped for member with full bracing

Figure 2.7 Effect of Brace Stiffness on deformations using Winter’s model

Figure 2.8 Cross-sectional Imperfections

Figure 2.9 Variable location of shear center for single Symmetric shapes

Figure 2.10 Geometry of typical web tapered I-beam

Figure 2.11 Equivalent Prismatic members for Lateral Torsional Buckling of web tapered I-members

Figure 2.12 Sections considered for calculating \((\sigma_{cr}) \)

Figure 2.13 Four cases considered in AISC Specifications

Figure 2.14 Diaphragm behavior

Figure 2.15 Member with lateral braces

Figure 2.16 Behaviour of members with flange braces

Figure 2.17 Continuous beam model

Figure 2.18 Twisting of columns in alternate direction

Figure 2.19 Twisting of all columns in same direction
Figure 3.1 Displacement and Rotational degrees of freedom

Figure 3.2 Unstable static response

Figure 3.3 Yield Surface in Principal Stress Space

Figure 3.4 Yield Surface for biaxial stress state

Figure 3.5 True stress versus true strain (Constitutive Law)

Figure 3.6 Numbering order for a 4-Noded Element

Figure 3.7 S4R –ELEMENT

Figure 3.8 Idealized Lateral bracing using

ABAQUS SPRING 1-element

Figure 4.1 Cross-section and the meshed surface planes

Figure 4.2 Verification of Dr. Lee’s prismatic beam with

4876.8 mm (192”) length indicating the lateral displacements

Figure 4.3 Verification of Dr. Lee’s prismatic beam with

6096.0 mm (240”) length indicating the lateral displacements and the governing buckling mode

Figure 4.4 Verification of Dr. Lee’s prismatic beam with

7315.2 mm (288”) length indicating the lateral displacements and the governing buckling mode

Figure 4.5 Verification of Dr. Lee’s prismatic beam with

8534.4 mm (336”) length indicating the lateral displacements and the governing buckling mode

Figure 4.6 Verification of Dr. Lee’s prismatic beam with
Figure 4.7 Verification of Dr. Lee’s prismatic beam with 9753.6 mm (384”) length indicating the lateral displacements and the governing buckling mode

Figure 4.8 W12X50 Cross-section and meshed surface planes

Figure 4.9 W12X50 Cross-section with eccentric loading

Figure 4.10 Finite Element Model of a simply supported beam with eccentric point load

Figure 4.11 Von Mises Stress distribution of a simply supported beam with eccentric point load (On a deformed Shape)

Figure 4.12 Out of plane deflection of a simply supported beam with eccentric point load (On a deformed Shape)

Figure 4.13 Rotation about Longitudinal Axis of W-Section Compared to T.V. Galambos’ Plot

Figure 4.14 LB-3 Test beam details

Figure 4.15 Meshed surface planes for LB-3 beam

Figure 4.16 LB-3 Test beam finite element model

Figure 4.17 Verification of LB-3 web tapered I-beam, Buckling mode-1

Figure 4.18 Verification of LB-3 web tapered I-beam, Buckling mode-1

Figure 4.19 Verification of LB-3 web tapered I-beam, Buckling mode-2

Figure 4.20 Verification of LB-3 web tapered I-beam, Buckling mode-3
Figure 4.21 Verification of LB-3 web tapered I-beam – Von Mises stress distribution

Figure 4.22 Load Deflection response of LB-3 beam based on node-4852

Figure 4.23 Load Deflection response of LB-3 Beam based on node-4914

Figure 4.24 W12X14 with a elastic lateral restraint

Figure 4.25 Verification of Dr.Yura’s beam with lateral stiffness, K=0.00 Kips/Inch

Figure 4.26 Verification of Dr.Yura’s beam with lateral stiffness, K= 38.54 N/mm (0.22 Kips/Inch)

Figure 4.27 Verification of Dr.Yura’s beam with lateral stiffness, K=63.07 N/mm (0.36 Kips/Inch)

Figure 4.28 Verification of Dr.Yura’s beam with lateral stiffness, K=113.87 N/mm (0.65 Kips/Inch)

Figure 4.29 Verification of Dr.Yura’s beam with lateral stiffness, K=131.39 N/mm (0.75 Kips/Inch)

Figure 4.30 Verification of Dr.Yura’s beam with lateral stiffness, K=210.23 N/mm (1.20 Kips/Inch)

Figure 4.31 Verification of Dr.Yura’s beam with lateral stiffness, K=332.87 N/mm (1.90 Kips/Inch)

Figure 4.32 Effect of lateral brace stiffness on the buckling capacity of beams

Figure 5.1 Cross-section at smaller end and meshed
Figure 5.2 Boundary conditions and load application at smaller end

Figure 5.3 Boundary conditions and load application at larger end

Figure 5.4 Lateral deflection contour for member with 240 inches length with $K= 0.00$ Kips/ Inch

Figure 5.5 Von Mises stress contour for member with 240 inches length with $K= 0.00$ Kips/ Inch

Figure 5.6 Lateral deflection contour for member with 240 inches length with $K= 1.50$ Kips/ Inch

Figure 5.7 Von Mises stress contour for member with 240 inches length with $K= 1.50$ Kips/ Inch

Figure 5.8 Lateral deflection contour for member with 288 inches length with $K= 0.00$ Kips/ Inch

Figure 5.9 Von Mises stress contour for member with 288 inches length with $K= 0.00$ Kips/ Inch

Figure 5.10 Lateral deflection contour for member with 288 inches length with $K= 1.20$ Kips/ Inch

Figure 5.11 Von Mises stress contour for member with 288 inches length with $K= 1.20$ Kips/ Inch

Figure 5.12 Lateral deflection contour for member with 336 inches length with $K= 0.00$ Kips/ Inch

Figure 5.13 Von Mises stress contour for member with 336 inches length with $K= 0.00$ Kips/ Inch
Figure 5.14 Lateral deflection contour for member with 336 inches length with K= 0.70 Kips/ Inch

Figure 5.15 Von Mises stress contour for member with 336 inches length with K= 0.70 Kips/ Inch

Figure 5.16 Lateral deflection contour for member with 384 inches length with K= 0.00 Kips/ Inch

Figure 5.17 Von Mises stress contour for member with 384 inches length with K= 0.00 Kips/ Inch

Figure 5.18 Lateral deflection contour for member with 384 inches length with K= 0.40 Kips/ Inch

Figure 5.19 Von Mises stress contour for member with 384 inches length with K= 0.40 Kips/ Inch

Figure 5.20 Variation of LPF's with respect to spans and lateral brace stiffness

Figure 5.21 Variation of Inelastic strength at smaller end with respect to spans with various lateral brace stiffness

Figure 5.22 Variation of Inelastic strength at larger end with respect to spans with various lateral brace stiffness

Figure 5.23 Variation of Inelastic strength at smaller end with respect to brace stiffness with various spans

Figure 5.24 Variation of Inelastic strength at larger end
with respect to brace stiffness with various

Figure 5.25 Optimum stiffness for the web tapered I-beam

Figure 5.26 Inelastic buckling moments with \(K=0.00 \) Kips/In

with respect to modified slenderness

Figure 5.27 Optimum inelastic buckling moments

with respect to modified slenderness

Figure 5.28 Optimum lateral brace stiffness with respect to

modified slenderness

Figure 5.29 Web Tapered I-beam with span 9144 mm (360 Inches),

\[K=0.00 \text{ N/mm (0.00 Kips/Inch)} \]

Buckling mode-1

Figure 5.30 Web Tapered I-beam with span 9144 mm (360 Inches),

\[K=0.00 \text{ N/mm (0.00 Kips/Inch)} \]

Buckling mode-2

Figure 5.31 Web Tapered I-beam with span 9144 mm (360 Inches),

\[K=0.00 \text{ N/mm (0.00 Kips/Inch)} \]

Buckling mode-3

Figure 5.32 Von Mises Stress distribution of a Web Tapered

I-beam with span 9144 mm (360 Inches),

\[K=17.72 \text{ N/mm (0.10 Kips/Inch)} \]

Figure 5.33 Out of plane deflection of a Web Tapered

I-beam with span 9144 mm (360 Inches),

\[K=17.72 \text{ N/mm (0.10 Kips/Inch)} \]

Figure 5.34 Load Deflection Response for \(L=9144 \text{ mm}(360 \text{ Inches}) \)
& K=17.72 N/mm (0.10 Kips/Inch) -----233

Figure 5.35 Out of plane deflection of a Web Tapered I-beam with span 9144 mm (360 Inches), K=98.46 N/mm (0.562 ips/Inch) (Optimum Stiffness) -----234

Figure 5.36 Von Mises Stress distribution of a Web Tapered I-beam with span 9144 mm (360 Inches),
K=98.46 N/mm (0.562 Kips/Inch) (Optimum Stiffness) -----234

Figure 5.37 Comparison between FEA and Developed Equations for 9144 mm (360 inches) long web tapered I-beam -----236

Figure 6.1 Meshed surface planes -----238

Figure 6.2 Lateral deflection contour for member with 360 inches length With K= 0.00 Kips/ Inch (MODEL-I) -----259

Figure 6.3 Von Mises stress contour for member with 360 inches length With K= 0.00 Kips/ Inch (MODEL-I) -----260

Figure 6.4 Lateral deflection contour for member with 360 inches length With K= 4.25 Kips/ Inch (MODEL-I) -----261

Figure 6.5 Von Mises stress contour for member with 360 inches length With K= 4.25 Kips/ Inch (MODEL-I) -----262

Figure 6.6 Lateral deflection contour for member with 360 inches length With K= 0.00 Kips/ Inch (MODEL-II) -----263

Figure 6.7 Von Mises stress contour for member with 360 inches length With K= 0.00 Kips/ Inch (MODEL-II) -----264

Figure 6.8 Lateral deflection contour for member with 360 inches
Figure 6.9 Von Mises stress contour for member with 360 inches length With K= 5.75 Kips/ Inch (MODEL-II) -----265

Figure 6.10 Lateral deflection contour for member with 360 inches length With K= 5.75 Kips/ Inch (MODEL-II) -----266

Figure 6.11 Von Mises stress contour for member with 360 inches length With K= 0.00 Kips/ Inch (MODEL-III) -----267

Figure 6.12 Lateral deflection contour for member with 360 inches length With K= 6.75 Kips/ Inch (MODEL-III) -----269

Figure 6.13 Von Mises stress contour for member with 360 inches length With K= 6.75 Kips/ Inch (MODEL-III) -----270

Figure 6.14 Lateral deflection contour for member with 360 inches length With K= 0.00 Kips/ Inch (MODEL-IV) -----271

Figure 6.15 Von Mises stress contour for member with 360 inches length With K= 0.00 Kips/ Inch (MODEL-IV) -----272

Figure 6.16 Lateral deflection contour for member with 360 inches length With K= 4.00 Kips/ Inch (MODEL-IV) -----273

Figure 6.17 Von Mises stress contour for member with 360 inches length With K= 4.00 Kips/ Inch (MODEL-IV) -----274

Figure 6.18 Lateral deflection contour for member with 360 inches length With K= 0.00 Kips/ Inch (MODEL-V) -----275

Figure 6.19 Von Mises stress contour for member with 360 inches length With K= 0.00 Kips/ Inch (MODEL-V) -----276

Figure 6.20 Lateral deflection contour for member with 360 inches length With K= 5.25 Kips/ Inch (MODEL-V) -----277
Figure 6.21 Von Mises stress contour for member with 360 inches length With K= 5.25 Kips/ Inch (MODEL-V) -----278

Figure 6.22 Lateral deflection contour for member with 360 inches length With K= 0.00 Kips/ Inch (MODEL-VI) -----279

Figure 6.23 Von Mises stress contour for member with 360 inches length With K= 0.00 Kips/ Inch (MODEL-VI) -----280

Figure 6.24 Lateral deflection contour for member with 360 inches length With K= 7.00 Kips/ Inch (MODEL-VI) -----281

Figure 6.25 Von Mises stress contour for member with 360 inches length With K= 7.00 Kips/ Inch (MODEL-VI) -----282

Figure 6.26 Lateral deflection contour for member with 360 inches length With K= 0.00 Kips/ Inch (MODEL-VII) -----283

Figure 6.27 Von Mises stress contour for member with 360 inches length With K= 0.00 Kips/ Inch (MODEL-VII) -----284

Figure 6.28 Lateral deflection contour for member with 360 inches length With K= 6.00 Kips/ Inch (MODEL-VII) -----285

Figure 6.29 Von Mises stress contour for member with 360 inches length With K= 6.00 Kips/ Inch (MODEL-VII) -----286

Figure 6.30 Lateral deflection contour for member with 360 inches length With K= 0.00 Kips/ Inch (MODEL-VIII) -----287

Figure 6.31 Von Mises stress contour for member with 360 inches length With K= 0.00 Kips/ Inch (MODEL-VIII) -----288

Figure 6.32 Lateral deflection contour for member with 360 inches length With K= 4.25 Kips/ Inch (MODEL-VIII) -----289
Figure 6.33 Von Mises stress contour for member with 360 inches length With K= 4.25 Kips/ Inch (MODEL-VIII) -----290

Figure 7.1 Illustration of design proposal -----296