CONTENTS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>vi</td>
</tr>
<tr>
<td>List of tables</td>
<td>xiv</td>
</tr>
<tr>
<td>List of figures</td>
<td>xxi</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER 1. INTRODUCTION 1

1.1 Background 1
1.2 Challenges in Distribution System Analysis and Design 2
1.3 Literature Review 5
1.4 Research Objectives 19
1.5 Contributions 19
1.6 Thesis Organization 20

CHAPTER 2. POWER FLOW ANALYSIS 21

2.1 Introduction 21
2.2 Mathematical Formulation 23
2.3 Illustration of Node Identification 27
2.3.1 Algorithm for Node Identification 27
2.4 Load Flow Calculation 28
2.4.1 Backward Propagation 30
2.4.2 Forward Propagation 30
2.4.3 Convergence Criterion 30
2.4.4 Algorithm for Load Flow Calculation 31
2.5 Illustrative Examples 32
2.5.1 Example – 1 32
2.5.2 Example – 2 34
2.5.3 Example – 3 38
2.6 Conclusions 44

CHAPTER 3. PLANT GROWTH SIMULATION 45

ALGORITHM

3.1 Introduction 45
3.2 Plant Growth Laws 47
3.3 Plant Growth Probability Model 47
3.4 Conclusions 49

CHAPTER 4. CONDUCTOR SELECTION 49

4.1 Introduction 50
4.2 Load Flow Method for Conductor Selection 52
4.3 Objective Function 52
4.4 Implementation of PGSA to Conductor Selection 53
4.5 Illustrative Examples 55
4.5.1 Example – 1 55
4.5.1.1 Conductor Selection of 26 Node RDS Without Load Growth 56
4.5.1.2 Conductor Selection of 26 Node RDS With Load Growth 60
4.5.2 Example – 2 64
4.5.2.1 Conductor Selection of 32 Node RDS Without Load Growth 64
4.5.2.2 Conductor Selection of 32 Node RDS With Load Growth

4.6 Conclusions

CHAPTER 5. NETWORK RECONFIGURATION

5.1 Introduction

5.2 Problem Formulation for Loss Reduction

5.3 Load Balancing

5.3.1 Formulation of Load Balancing Problem

5.3.1.1 Objective Function

5.4 Implementation of PGSA to Reconfiguration

5.4.1 Decision Variables Design

5.4.2 Switch State Description

5.4.3 Constraints Treatment

5.4.4 Algorithm for Network Reconfiguration

5.5 Illustrative Examples

5.5.1 Case I

5.5.1.1 Example – 1

5.5.1.2 Example – 2

5.5.1.3 Example – 3

5.5.2 Case II

5.5.2.1 Example – 1

5.5.2.2 Example – 2

5.6 Conclusions

CHAPTER 6. CAPACITOR PLACEMENT
6.1 Introduction 113
6.2 Mathematical Formation of Capacitor Placement 114
6.2.1 Objective Function 114
6.3 Candidate Node Identification 116
6.3.1 Algorithm for Node Identification 118
6.4 Implementation of PGSA to Capacitor Placement 118
6.5 Illustrative Examples 121
6.5.1 Example – 1 121
6.5.2 Example – 2 125
6.5.3 Example – 3 130
6.6 Conclusions 137

CHAPTER 7. VOLTAGE REGULATOR PLACEMENT 138
7.1 Introduction 138
7.2 Load Flow for Voltage Regulator Placement 140
7.3 Problem Formulation for Voltage Regulator Placement 141
7.3.1 Selection of Tap Position of VR’s 142
7.3.2. Illustrations of Candidate Node Identification 142
7.3.3. Algorithm for Candidate Node Identification 144
7.4 Implementation of PGSA to Voltage Regulator Placement 145
7.5. Illustrative Examples 147
7.5.1 Example – 1 147
7.5.2 Example – 2 153
7.6 Conclusions 160
<table>
<thead>
<tr>
<th>CHAPTER 8. CONCLUSIONS</th>
<th>161</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Conclusions</td>
<td>161</td>
</tr>
<tr>
<td>8.2 Future Scope</td>
<td>164</td>
</tr>
<tr>
<td>References</td>
<td>165</td>
</tr>
<tr>
<td>Appendix A</td>
<td>184</td>
</tr>
<tr>
<td>Appendix B</td>
<td>190</td>
</tr>
<tr>
<td>Appendix C</td>
<td>194</td>
</tr>
</tbody>
</table>