TABLE OF CONTENT

1 Introduction .. 1
2 Review of Literature .. 5
 2.1 Life-cycle of the parasite ... 8
 2.1.1 Life stages within the human blood stream (erythrocytic stages) 8
 2.1.2 Life stages of the mosquito ... 8
 2.1.3 Life stage within the human liver (exoerythrocytic stages) 9
 2.2 Pathogenesis ... 9
 2.3 The *P. falciparum* genome sequence ... 10
 2.4 *P. falciparum* protein identification as drug candidate 11
 2.5 Treatment and chemotherapy for malaria .. 13
 2.5.1 Quinolines and Chloroquinone .. 15
 2.5.2 Artemisinin ... 15
 2.5.3 Antifolates ... 16
 2.6 Emergence of drug resistance .. 16
 2.7 Methods to study parasite .. 17
 2.7.1 Cell culture of erythrocytic stages ... 17
 2.7.2 Cell culture of liver stages ... 18
 2.7.3 Other *in vitro* methods of study .. 18
 2.8 Integrative and Systems biology in Drug Discovery .. 21
 2.9 Systems biology in Drug Discovery ... 22
 2.9.1 Role of Systems biology in Controlling *Plasmodium falciparum* 23
 2.9.2 High-Throughput Sequencing as backbone to Systems biology for the
 antimalarial research ... 24
 2.10 Systems biology approaches for identifying antimicrobial target 27
 2.11 Antimicrobial targets to drug discovery .. 29
 2.11.1 Application of systems biology in drug discovery in *Plasmodium falciparum*
 .. 29
 2.12 Reconstruction of Biological networks ... 30
 2.13 Metabolism in *Plasmodium falciparum* ... 30
 2.13.1 Carbohydrate metabolism ... 30
 2.13.2 Protein metabolism ... 31
 2.13.3 Hemoglobin metabolism ... 31
 2.14 Drug Targets in *Plasmodium falciparum* .. 32
 2.15 Plasmspein in *Plasmodium falciparum* ... 38
 2.16 X-Ray Structure of Plasmspein ... 39
 2.17 Perspectives of virtual screening for Drug discovery 40
 2.18 Molecular docking tools utilized for antimalarial drug discovery virtual screening
 .. 40
 2.19 Pharmacophore in Antimalarial drug Discovery ... 42
Materials and methods

3.1 Database Development

3.1.1 CMS based Database development

3.1.2 Plasmoref: Plasmodium falciparum reference database

3.1.3 Heterobase: Database of Novel Heterocyclic compounds

3.2 Integrative Biology and Systems Biology study for Plasmodium falciparum

3.2.1 Plasmodium falciparum Genome sequence data

3.2.2 Pathway tool and Pathologics based study

3.3 Molecular docking based virtual screening

3.3.1 Library creation

3.3.2 Generation of 3D structure

3.3.3 Ligand Preparation

3.3.4 Target Preparation

3.3.5 Active Site Detection

3.3.6 Molecular docking

3.3.7 Docking output interpretation

3.4 Pharmacophore

3.4.1 Generation of the structure-based Pharmacophore model

3.4.2 Ligand-based Pharmacophore Model Generation

3.4.3 Virtual screening Heterobase using the Pharmacophore model

3.5 Docking Server

3.6 in vitro testing

3.6.1 Chemical Synthesis of Drug Candidate

3.7 Integrative biology study

3.8 Drug Likeliness and QSAR based analysis for best compound

Results and Discussion

4.1 Library and Database Creation

4.2 Network model creation

4.2.1 Integrative Biology and Systems Biology based network model reconstruction

4.2.2 Publishing Network Model

4.2.3 Data mining of Network model and Genomic data for target finding

4.2.4 Multi-target malaria drug discovery

4.3 Molecular docking study for antimalarial drug discovery

4.3.1 Docking output analysis

4.3.2 Docking of known Active compound

4.3.3 Docking of test compound

4.3.4 Profile of Heterobase active compounds

4.3.5 Top 20 compounds

4.4 Docking Server

4.5 Pharmacophore based virtual screening

4.5.1 Structure-based model

4.5.2 Ligand-based Model

4.5.3 Validation of Ligand based Pharmacophore model generation
4.5.4 Result of Pharmacophore based Virtual Screening ..83
4.5.5 Consensus matrix analysis of docking and pharmacophore based virtual screening ...85
4.6 in vitro Testing ...88
4.6.1 in vitro anti-plasmodium activity testing by pLDH assay ..88
4.7 Molecular Docking of pooled top 20 Ligands against different drug targets for Polypharmacology Study ...90
4.7.1 Comparative binding affinity of in vitro anti-plasmodium active compounds for various targets ...105
4.7.2 Binding pattern analysis for best ligand 3007 in each different receptor108
4.7.3 Drug Likeness and QSAR study ...108
5 Conclusion ...115
6 Summary ..118
7 References ..127
8 Publications and Conference poster presentations ...160
LIST OF TABLES

Table 2.1 : List of Targets and effective drugs from *Plasmodium* spp.........................35
Table 4.1 : Summary of Network Model...55
Table 4.2 : Targets identified using network data mining approach for *P. falciparum*........64
Table 4.3 : Docking output analysis for entire library..72
Table 4.4 : Validation of Pharmacophore model using IC$_{50}$ value.................................83
Table 4.5 : Top 20 compounds from Virtual screening for Structure-based Pharmacophore model ...84
Table 4.6 : Top 20 compounds from Virtual screening for Ligand-based Pharmacophore model ...85
Table 4.7 : Consensus matrix analysis of virtual screening..87
Table 4.8 : Selected compounds for synthesis and *in vitro* testing....................................89
Table 4.9 : pLDH assay from *P. falciparum* ..90
Table 4.10 : pLDH assay from *P. vivax* ...90
Table 4.11 : Molecular Docking of 47 compounds pooled from top 20 Ligands against different drug targets..98
Table 4.12 : Comparative binding affinity of *in vitro* anti-plasmodium active compounds for various targets...107
Table 4.13 : Drug Likeness and QSAR for compound 3007..112
LIST OF FIGURES

Figure 2.1 : Geographical Distribution of Malaria (WHO 2012 Report).. 7
Figure 2.2: The multiple life stages and host cells of Plasmodium. Parasite nuclei are shown in dark purple, cytosol as a lighter purple, as under Giemsa stain... 10
Figure 2.3 : A system biology approach to understanding the parasite biology for the design of new drug based on Systems biology .. 25
Figure 2.4 : General Pathway for hemoglobin metabolism in P. falciparum.. 33
Figure 2.5 : Crystal structure of Plasmepsin 1 from Plasmodium falciparum; Protein chains are colored from the N-terminal to C-terminal using rainbow color gradient....................... 38
Figure 2.6 : Aspartic Protease with active sites and inhibitor... 39
Figure 4.1 : Database interface of Plasmoref at user end... 52
Figure 4.2 : Database interface of Heterobase at user end .. 53
Figure 4.3 : Subgroups of the pathways found in the model. ... 56
Figure 4.4 : Summary of Plasmodium falciparum 3D7 genome data uploaded to Pathway tool 17.0 .. 56
Figure 4.5 : Genome Overview of Plasmodium falciparum 3D7 genome data 57
Figure 4.6: Cellular overview of Plasmodium falciparum 3D7 genome data .. 57
Figure 4.7 : Genome browser for Plasmodium falciparum 3D7 genome data 58
Figure 4.8 : Gene ontology based Plasmodium falciparum 3D7 genome data exploration 58
Figure 4.9 : Current Pathway Holes of Plasmodium falciparum 3D7 ... 59
Figure 4.10 : Filled Pathway Holes of Plasmodium falciparum 3D7 ... 59
Figure 4.11 : Gene level literature citation by Gene editor... 60
Figure 4.12 : Visualization of the reference Gene linked literature citation ... 60
Figure 4.13 : Exporting of curated Plasmodium falciparum 3D7 genome data in SBML format 61
Figure 4.14 : Importing SBML data in Cell Designer 4.2... 61
Figure 4.15 : Bird Eye view of Network model output from Cell Designer .. 62
Figure 4.16 : Data mining in network model for target finding ... 62
Figure 4.17 : Drug-target network of 1,908 active compounds predicted for 147 P. falciparum proteins .. 66
Figure 4.18 : Plasmepsin and Falcipain group network ... 67
Figure 4.19 : Overview of metabolism and transport in P. falciparum.. 68
Figure 4.20 : Tracing back the metabolic pathway for Hemoglobin degradation in Plasmodium falciparum 3D7 ... 69
Figure 4.21 : Plasmepsin Molecule (1J8J) .. 71
Figure 4.22 : No of compounds from different libraries below the binding energy of Control ligand 71
Figure 4.23 : Top 20 compounds from Duke’s database for docking based VS from Plasmpesin 1J8J .. 75
Figure 4.24 : Top 20 compounds from UEFS Natural Products compound Library obtained from docking based VS from Plasmpesin 1J8J ... 76
Figure 4.25 : Top 20 compounds from Heterobase library obtained from docking based VS from Plasmpesin 1J8J ... 76
Figure 4.26 : Top 20 Hit compounds sorted with Binding Energy for docking against receptor 1J8J .. 77
Figure 4.27: Proportion of various moiety in Heterobase for binding energy below the control ligand.

Figure 4.28: Top 20 Hit compounds obtained from docking based virtual screening for 1J8J from the entire library.

Figure 4.29: Autodock Vina based Docking Server for Plasmepsin receptor of *Plasmodium falciparum*.

Figure 4.30: Structure based Pharmacophore model.

Figure 4.31: Ligand based Pharmacophore model.

Figure 4.32: Combined Pharmacophore model.

Figure 4.33: Molecular Docking of pooled top 20 Ligands against Plasmspepsin 1 (1J8J).

Figure 4.34: Molecular Docking of pooled top 20 Ligands against Plasmspepsin 2 (2R9B).

Figure 4.35: Molecular Docking of pooled top 20 Ligands against Falcipain-2 (3BPF).

Figure 4.36: Molecular Docking of pooled top 20 Ligands against PfDHFR Quadrupal Mutant (3DG8).

Figure 4.37: Molecular Docking of pooled top 20 Ligands against PfDHFR-TS (3DGA).

Figure 4.38: Molecular Docking of pooled top 20 Ligands against Peptide deformylase of PF (1RL4).

Figure 4.39: Molecular Docking of pooled top 20 Ligands against Protein kinase 5 of PF (PfPK5) (1V0O).

Figure 4.40: Molecular Docking of pooled top 20 Ligands against Crystal Structure of Cdk5:p25 of Human (3O0G).

Figure 4.41: Molecular Docking of pooled top 20 Ligands against Plasmepsin (1QS8) *P. vivax*.

Figure 4.42: Molecular Docking of pooled top 20 Ligands against HIV-1 proteinase (1HXB).

Figure 4.43: Binding Interaction of Ligand 3007 with other receptors used in present study.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>CQ</td>
<td>Chloroquine</td>
</tr>
<tr>
<td>DHFR</td>
<td>Dihydrofolate reductase</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulphoxide</td>
</tr>
<tr>
<td>GOLD</td>
<td>Genetic Optimisation Ligand Docking</td>
</tr>
<tr>
<td>H-Bond</td>
<td>Hydrogen Bond</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide</td>
</tr>
<tr>
<td>PDB</td>
<td>Protein Data Bank</td>
</tr>
<tr>
<td>PfPKB</td>
<td>PKB homologue in P. falciparum</td>
</tr>
<tr>
<td>PfPLC</td>
<td>Phospholipase C homologue in P. falciparum</td>
</tr>
<tr>
<td>PGDB</td>
<td>Pathway/Genome Database</td>
</tr>
<tr>
<td>PKB</td>
<td>Protein kinase B</td>
</tr>
<tr>
<td>PlasmoDB</td>
<td>Plasmodium genome database</td>
</tr>
<tr>
<td>pLDH</td>
<td>Parasite Lactate Dehydrogenase Assay</td>
</tr>
<tr>
<td>QSAR</td>
<td>Quantitative structure-activity relationship</td>
</tr>
<tr>
<td>RMSD</td>
<td>Root Mean Square Deviation</td>
</tr>
<tr>
<td>VS</td>
<td>Virtual Screening</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>