CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td>i-iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v-xvi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi-xvii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvii-xxiii</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS IN REFREED JOURNALS</td>
<td>xxiv-xxv</td>
</tr>
</tbody>
</table>

Chapter I

Introduction

1.1 Introduction
1.2 Soft Matter
1.3 Magnetic Fluids
1.3.1 Tunable Interparticle Interactions
1.3.2 Interesting Properties of Magnetic Fluids
1.3.3 Applications of Magnetic Fluids
1.3.4 Probing of Internal Structures in Magnetic Fluids
1.3.5 Structural Transitions in Magnetic Fluids
1.4 Motivation
1.5 Objectives
1.6 Overview of the Thesis

Chapter II

Materials & Experimental Details

2.1 Introduction
2.2 Magnetic Fluid Samples
2.2.1 Ferrofluid (or Magnetic Nanofluid)
2.2.2 Ferrofluid Emulsion (or Nanoemulsion)
2.3 Measurement of Scattered Light Intensity and the Scattered Pattern
Chapter III
Probing the Magnetic Field Induced Nano-structures in Magnetic Fluids by Light Transmission
3.1 Introduction
3.2 Experimental Details
3.3 Results and Discussions
3.3.1 Magnetic Field Induced Light Transmission in Ferrofluid
3.3.2 Possible Reasons for Enhancement and Extinction of Light in Ferrofluid
3.3.3 Magnetic Field Induced Light Transmission in Nanoemulsion
3.3.4 Possible Reasons for Variations of Field Induced Transmitted Intensity in Nanoemulsion
3.3.5 Variations of Transmitted Lobe Intensity as a Function of Magnetic Field in Nanoemulsion
3.4 Conclusions
Chapter IV
Probing the Field Induced Structural Transitions by Transmitted Light Speckle Dynamics in Magnetic Fluids
4.1 Introduction
4.2 Experimental Details

4.3 Results and Discussions

4.3.1 Field Induced Variations of Speckle Parameters in Ferrofluid

4.3.1.1 Speckle Size and Intensity

4.3.1.2 Effect of Surface Roughness on Degree of Coherence and Percentage of Depolarization

4.3.1.3 Speckle Contrast

4.3.1.4 Speckle Correlation Coefficient

4.3.2 Field Induced Variations of Lobe Speckle Parameters in Nanoemulsion

4.3.2.1 Lobe Speckle Contrast

4.3.2.2 Angular Speckle Correlation Coefficient

4.4 Conclusions

Chapter V

Magnetic Field Dependent Backscattering of Light in Water Based PAA Covered Fe₃O₄ Nanofluid

5.1 Introduction

5.2 Experimental Details

5.3 Results and Discussions

5.3.1 Field Induced Backscattered Speckle Dynamics in Ferrofluid

5.3.2 Field Induced Variations of Backscattered Light Intensity and Possible Reasons for Extinction of Backscattered Light

5.3.3 Angular Variations of Backscattered Light in Presence of External Magnetic Field

5.3.4 Tunability of Backscattered Light

5.4 Conclusions

Chapter VI

Probing the Magnetic Field Dependent Structural Transitions
in Nanoemulsion by Near Infrared Light Absorption

6.1 Introduction 88
6.2 Experimental Details 89
6.3 Results and Discussions 89
 6.3.1 Near Infrared (NIR) Light Absorption by Nanoemulsion 89
 6.3.2 Magnetic Field Dependent NIR Light Absorption by Nanoemulsion 93
 6.3.3 Field Induced Variations of Imaginary Part of the Refractive Index (k_1) of Nanoemulsion 97
 6.3.4 Explanation of Magnetic Field Dependent Variations of NIR Light Absorption Based on Mie Theory 101
6.4 Conclusions 103

Chapter VII
Probing the Effect of Suspended Nano-particle Size on Magnetic Field Induced Structural Transitions in Ferrofluids

7.1 Introduction 105
7.2 Experimental Details 106
7.3 Results and Discussions 106
 7.3.1 Field Induced Light Transmission Through Three Ferrofluids having Different Sized Magnetic Nanoparticles in Dispersion 106
 7.3.2 Possible Reasons for Size Dependent Variations of Field Induced Extinction of Light 112
 7.3.3 Effect of Suspended Nanoparticle Size on Time Dependent Field Induced Light Transmission 113
 7.3.4 Effect of Suspended Nanoparticle Size on Field Induced Transmitted Lobe Intensity and Lobe Speckle Contrast 115
7.4 Conclusions 118
Chapter VIII

Probing the Effect of Temperature on Magnetic Field Induced Structural Transitions in Ferrofluids

8.1 Introduction 120
8.2 Experimental Details 120
8.3 Results and Discussions 121

8.3.1 Wavelength Dependent Behavior of Magnetic Field Induced Light Transmission in Ferrofluids at Fixed Sample Temperature 121
8.3.2 Temperature Dependent Field Induced Light Transmission and Possible Reasons of Temperature Effect on Transmission 125

8.3 Conclusions 132

Chapter IX

Conclusions and Future Perspectives

9.1 Conclusions 133
9.2 Applications 135
9.3 Future Perspectives 135

LIST OF REFERENCES 136