CONTENTS

LIST OF TABLES xxxiii
LIST OF FIGURES xxv
SYNOPSIS xv
NOMENCLATURE xxxiv
INTRODUCTION 1

CHAPTER 1: LITERATURE REVIEW

1.1 Introduction 7
1.2 Creep 8
1.3 Deformation mechanisms 9
1.4 Fracture mechanisms 14
1.4.1 Creep fracture mechanisms 16
1.4.1.1 Cavity nucleation 17
1.4.1.1.1 Vacancy accumulation 17
1.4.1.1.2 Grain boundary sliding 18
1.4.1.1.3 Decohesion at inhomogeneity on grain boundary 19
1.4.1.1.4 Plastic deformation 19
1.4.1.2 Creep cavity growth 20
1.4.1.2.1 Plasticity controlled growth 21
1.4.1.2.2 Diffusion controlled growth 21
1.5 Creep damage 25
1.5.1 Creep damage evaluation
 1.5.1.1 Kachanov-Rabotnov model 25
 1.5.1.2 Physically based continuum damage mechanics model 28

1.6 Multiaxial state of stress 30
 1.6.1 Types of multiaxial testing 32
 1.6.1.1 Tubes with internal pressure 33
 1.6.1.2 Tension-torsion of thin tubular specimens 34
 1.6.1.3 Cruciform specimen 35
 1.6.1.4 Notched specimens 35
 1.6.1.4.1 Stresses around notch 35

1.7 Effect of notch on creep behaviour 36
 1.7.1 Stress redistribution 36
 1.7.2 Notch Strengthening and weakening 37
 1.7.3 Creep rupture life prediction under multiaxial state of stress 40
 1.7.4 Finite Element analysis coupled with continuum damage mechanics 43
 1.7.5 Effect of constraint on creep deformation 44
 1.7.6 Effect of Multiaxial state of stress on ductility 45

1.8 Ferritic steels used in high temperature applications 47
 1.8.1 2.25Cr-1Mo steel 49
 1.8.2 9Cr-1Mo steel 50
 1.8.3 Modified 9Cr-1Mo steel 51

1.9 Scope of the work 53

CHAPTER 2: EXPERIMENTAL AND NUMERICAL TECHNIQUES

2.1 Introduction 56
2.2 Materials 56
2.3 Tensile tests 56
2.4 Creep tests 58
 2.4.1 Plain specimens 58
 2.4.2 Notched specimens 60
2.5 Finite element analysis 61
2.6 Continuum damage mechanics 63
2.7 Fractographic studies 66

CHAPTER 3: UNIAXIAL CREEP BEHAVIOUR

3.1 Introduction 69
3.2 Tensile deformation 69
3.3 Creep deformation 69
3.4 Creep rupture life and damage 76
3.5 Time to onset of tertiary stage of creep deformation and creep damage tolerance 78
3.6 Conclusions 85

CHAPTER 4: EFFECT OF NOTCH ON CREEP RUPTURE BEHAVIOUR

4.1 Introduction 88
4.2 Creep rupture life of the steels in presence of notch 88
4.3 Fracture behaviour of the steels in presence of notch 94
4.4 FE analysis of stress distribution across the notch throat plane 96
 4.4.1 Distribution of axial stresses on initial loading 98
 4.4.2 Distribution of stresses during creep deformation 99
 4.4.2.1 Effect of localized plastic deformation on stationary state stress distribution 101
4.5 Role of different components of multiaxial state of stress on creep 105
4.5.1 Notch strengthening and cavitation in 2.25Cr-1Mo steel – effect of multiaxial state of stress

4.6 Material dependency of notch strengthening

4.7 Conclusions

CHAPTER 5: EFFECT OF NOTCH SHARPNESS ON CREEP RUPTURE BEHAVIOUR

5.1 Introduction

5.2 Effect of notch sharpness on creep rupture life

5.3 Effect of notch sharpness on fracture appearance

5.4 Finite element analysis to assess the notch strengthening and fracture behaviour

 5.4.1 Effect of notch acuity ratio on stress distribution

 5.4.1.1 Elastic and elasto-plastic behaviour

 5.4.1.2 Elasto-plastic-creep behaviour

 5.4.2 Assessment of notch strengthening in the steels

 5.4.3 Assessment of variation in fracture appearance

5.5 Conclusions

CHAPTER 6: CREEP LIFE PREDICTION UNDER MULTIAXIAL STATE OF STRESS

6.1 Introduction

6.2 Representative stress concept

6.3 Skeletal point concept

6.4 Creep life prediction based on representative stress

 6.4.1 Hayhurst model

 6.4.2 Cane Model
6.4.3 Nix Model

6.5 Creep damage and life prediction based on finite element analysis coupled with continuum damage mechanics

6.5.1 Uniaxial creep

6.5.2 Multiaxial creep

 6.5.2.1 Damage evolution

 6.5.2.2 Creep rupture life prediction

6.6 Conclusions

CHAPTER 7: SUMMARY AND SCOPE FOR FUTURE WORK

7.1 Summary

7.2 Suggestions for future work

REFERENCES