CONTENTS

1. INTRODUCTION 01-66

1.1 Biopharmaceutical classification system 2

1.2 Strategies to counter bioavailability problems 3

1.2.1 Increasing aqueous solubility 3

1.2.2 Increasing permeability 17

1.3 Cyclodextrins 26

1.3.1 Need of cyclodextrins in drug delivery 27

1.3.2 Limitations 30

1.3.3 Advantages 31

1.4 Need of novel delivery systems 35

1.5 Cyclodextrin based novel drug delivery systems 36

1.6 Research envisaged 48

1.7 Plan of work 50

References 52

2. PROFILE OF CYCLODEXTRINS, DRUGS AND POLYMERS 67-105

2.1 Cyclodextrins 67

2.1.1 Structure and physiochemical properties 67

2.1.2 Regulatory status 69

2.1.3 Toxicological considerations 70

2.1.4 β-Cyclodextrin (β-CD) 73

2.1.5 Hydroxypropyl-β-cyclodextrin (HP-β-CD) 74

2.1.6 Randomly methylated-β-CD (RM-β-CD) 76

2.2 Drugs 77

2.2.1 Simvastatin 77

2.2.2 Rosuvastatin 85

2.3 Polymers 93

2.3.1 Chitosan 94

2.3.2 Eudragit RS100 96

References 98

3. PREFORMULATION STUDIES 106-118

3.1 Identification 106

3.2 UV-Spectrophotometric Method 106
3.2.1 Preparation of standard solutions 106
3.2.2 Preparation of calibration curves 107
3.3 FTIR Spectroscopy 107
3.4 Drug-Polymer Interaction Studies 107
3.5 Results and Discussion 107
 3.5.1 Simvastatin 108
 3.5.2 Rosuvastatin 112
References 118

4. PREPARATION & CHARACTERIZATION OF COMPLEXES 119-174

4.1 Phase solubility analysis 119
 4.1.1 Determination of stability constants 122
 4.1.2 Analysis of cyclodextrin complexes 122
4.2 Materials 123
 4.2.1 Drugs 123
 4.2.2 Cyclodextrins 124
 4.2.3 Polymers 124
 4.2.4 Reagents/chemicals 124
4.3 Methods 125
 4.3.1 Phase solubility studies 125
 4.3.2 Preparation of drug-cyclodextrin inclusion complexes 125
 4.3.3 Characterization of drug-cyclodextrin complexes 127
 4.3.4 Drug content 128
 4.3.5 Aqueous solubility 128
 4.3.6 In-vitro dissolution studies 128
4.4 Results and discussion 129
 4.4.1 Phase solubility studies of simvastatin 129
 4.4.2 Preparation of simvastatin-CD inclusion complexes 131
 4.4.3 Characterization of simvastatin-CD complexes 132
 4.4.4 Drug content and aqueous solubility 141
 4.4.5 In-vitro dissolution studies 144
 4.4.6 Phase solubility studies of rosvastatin 150
 4.4.7 Preparation of rosvastatin-CD inclusion complexes 151
 4.4.8 Characterization of rosvastatin-CD complexes 152
 4.4.9 Drug content and aqueous solubility 161
 4.4.10 In-vitro dissolution studies 164
5. PREPARATION & CHARACTERIZATION OF NCs

5.1 Methods

5.1.1 Preparation of chitosan nanocarriers (NCs)
5.1.2 Nanocarrier characterization
5.1.3 Evaluation of drug encapsulation
5.1.4 In-vitro drug release studies
5.1.5 Differential scanning calorimetry
5.1.6 X-ray diffractometry
5.1.7 Storage stability studies

5.2 Result and discussion- Simvastatin nanocarriers

5.2.1 Preparation and optimization of SNCs
5.2.2 In-vitro release studies of selected SVS NCs
5.2.3 Differential scanning calorimetry of SVS NCs
5.2.4 X-ray diffractometry of SVS NCs
5.2.5 Storage stability studies of SVS NCs

5.3 Result and discussion- Rosuvastatin nanocarriers

5.3.1 Preparation optimization & characterization of RNCs
5.3.2 In-vitro drug release studies of selected RVS NCs
5.3.3 Differential scanning calorimetry of RVS NCs
5.3.4 X-ray diffractometry of RVS NCs
5.3.5 Storage stability studies of RVS NCs

References

6. DEVELOPMENT AND CHARACTERIZATION OF MPs

6.1 Methods

6.1.1 Preparation of microspheres (MPs)
6.1.2 Microspheres characterization of MPs
6.1.3 In-vitro drug release studies
6.1.4 Differential scanning calorimetry
6.1.5 X-ray diffractometry
6.1.6 Storage stability studies

6.2 Result and discussion- Simvastatin microspheres

6.2.1 Preparation and optimization of SMPs
6.2.2 In-vitro release studies of SMPs
6.2.3 Differential scanning calorimetry studies of SMPs

References
6.2.4 X-ray diffractometry (XRD) studies of SMPs 255
6.2.5 Storage stability studies of SMPs 256
6.3 Result and discussion- RVS microspheres 257
 6.3.1 Preparation and optimization of RMPs 257
 6.3.2 In-vitro drug release studies of RMPs 270
 6.3.3 Differential scanning calorimetry (DSC) of RMPs 273
 6.3.4 X-ray diffractometry (XRD) of RMPs 275
 6.3.5 Storage stability studies of RMPs 276
References 279
7. IN-VIVO STUDIES 284-311
 7.1 Protocol design 284
 7.1.1 Pharmacodynamic activity of selected complexes 284
 7.1.2 In-vivo antihyperlipidemic activity of NCs & MPs 285
 7.1.3 Selected formulations and their code 286
 7.1.4 Models selected for the study 287
 7.1.5 Procurement, identification and housing of animals 287
 7.1.6 Conditioning/ grouping of animals 288
 7.1.7 Dose administered 288
 7.1.8 Induction of hyperlipidemia 289
 7.1.9 Blood samples collection 289
 7.2 Results and discussion 290
 7.2.1 Pharmacodynamic activity of selected SVS complex 290
 7.2.2 Pharmacodynamic activity of selected RVS complex 293
 7.2.3 In-vivo antihyperlipidemic activity of SVS NCs 296
 7.2.4 In-vivo antihyperlipidemic activity of RVS NCs 300
 7.2.5 In-vivo antihyperlipidemic activity of SVS MPs 303
 7.2.6 In-vivo antihyperlipidemic activity of RVS MPs 307
References 311
8. SUMMARY AND CONCLUSION 312-324