List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Glassmaking process in laboratory.</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Effect of temperature on the volume of glass forming melt.</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Two dimensional diagram of crystalline and amorphous SiO₂ network.</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Continuous random network model simulating the structure of amorphous SiO₂.</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Electric configuration of the Si-O-Si oxygen bridge.</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>Representation of Q₄, Q₃, Q₂, Q₁ and Q₀.</td>
<td>9</td>
</tr>
<tr>
<td>1.7</td>
<td>Different structural group of B₂O₃.</td>
<td>11</td>
</tr>
<tr>
<td>1.8</td>
<td>Structural representation of B₂O₃.</td>
<td>11</td>
</tr>
<tr>
<td>1.9</td>
<td>(a) Sillen model; vacancies ordered along <111>, (b) Gattow model; vacancies completely disordered in oxygen sub-lattice, with each oxygen site having 75% occupancy, (c) Willis model; oxygen atoms displaced from regular 8c sites (for example, the atom marked A in (b)) along <111> to 32f sites. The Bi³⁺ ions labelled 1-4 in (c) correspond to those labelled 1-4 in (b).</td>
<td>13</td>
</tr>
<tr>
<td>1.10</td>
<td>Electromagnetic wave spectrum.</td>
<td>17</td>
</tr>
<tr>
<td>1.11</td>
<td>Molecular response to radiation.</td>
<td>17</td>
</tr>
<tr>
<td>1.12</td>
<td>Diffraction of X-rays by crystal planes.</td>
<td>18</td>
</tr>
<tr>
<td>1.13</td>
<td>Selected spectrum of IR region from electromagnetic regime.</td>
<td>21</td>
</tr>
<tr>
<td>1.14</td>
<td>Fundamental vibrations of (a) carbon dioxide molecule (b) water molecule.</td>
<td>21</td>
</tr>
<tr>
<td>1.15</td>
<td>A standard DSC curve for amorphous material.</td>
<td>25</td>
</tr>
<tr>
<td>2.1</td>
<td>Scheme of the work done.</td>
<td>47</td>
</tr>
<tr>
<td>2.2</td>
<td>Rigaku Miniflex-II diffractometer.</td>
<td>49</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic arrangement of X-ray diffractometer.</td>
<td>50</td>
</tr>
<tr>
<td>2.4</td>
<td>FTIR Perkin-Elmer (BX-II) spectrometer.</td>
<td>52</td>
</tr>
<tr>
<td>2.5</td>
<td>Basic components of an FTIR spectrometer.</td>
<td>52</td>
</tr>
<tr>
<td>2.6</td>
<td>DSC/TGA Q600 SDT TA instruments.</td>
<td>54</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic arrangement of SDT DSC instruments.</td>
<td>55</td>
</tr>
<tr>
<td>2.8</td>
<td>Sample Cup/Sample Thermocouple configuration.</td>
<td>55</td>
</tr>
<tr>
<td>2.9</td>
<td>Basic construction of a spectrophotometer.</td>
<td>57</td>
</tr>
<tr>
<td>2.10</td>
<td>Dual beam UV-Vis spectrophotometer.</td>
<td>59</td>
</tr>
<tr>
<td>2.11</td>
<td>Impedance Analyzer.</td>
<td>60</td>
</tr>
<tr>
<td>2.12</td>
<td>Nyquist plot and RC circuit.</td>
<td>60</td>
</tr>
</tbody>
</table>
3.1 XRD patterns of all LZBB glasses.
3.2 XRD patterns of all LCBB glasses.
3.3 IR transmission spectra at RT for all the LZBB glasses (in MIR region).
3.4 IR transmission spectra at RT for all the LCBB glasses (in MIR region).
3.5 Composition variation of density (Dₐ), molar volume (Vₐ) and hypothetical crystalline volume (Vₐₑ) and inset: difference between Vₐ and Vₑ (ΔV) of LZBB glasses. (The solids lines are guide to eye)
3.6 Compositional variation of density (Dₐ), molar volume (Vₐ) and crystalline volume (Vₑ) and inset: difference between Vₐ and Vₑ (ΔV) of LCBB glasses. (The solid lines are guide to eye)
3.7 DSC curves for all LZBB glasses showing characteristics temperatures such as glass transition temperature, exothermic peak and melting temperature are marked on the plot. The inset shows the variation of Tₑ, with Bi₂O₃ content.
3.8 DSC curves for all LCBB glasses indicating the characteristic temperatures such as glass transition temperature, exothermic peak and melting temperature. Inset: The compositional variation of Tₑ.
3.9 Optical transmission spectra for all the LZBB glasses
3.10 Optical absorption spectra at RT for all LZBB glasses.
3.11 Tauc's plot for all LZBB glasses (a) for n = 2 and (b) for n = 3
3.12 Variation of Eₐ with Bi₂O₃ content.
3.13 Urbach’s plot for 30Li₂O·20ZnO·xBi₂O₃·(50-x)B₂O₃ (LZBB) glasses.
3.14 Optical absorption spectra at RT for all LCBB glasses.
3.15 Tauc’s plots for Li₂O·CdO·Bi₂O₃·B₂O₃ glasses (n =2).
3.16 Tauc’s plots for Li₂O·CdO·Bi₂O₃·B₂O₃ glasses (n = 3).
3.17 Optical transmission spectra at RT for all the LCBB glasses.
3.18 Urbach plot for LCBB 0 glass sample.
3.19 Experimental Nyquist plots for LZBB 4 glass sample at different temperatures.
3.20 Reciprocal temperature dependence of dc conductivity (σₑ) at different composition. Inset: The compositional variation of Eₑ with Bi₂O₃ (mol%).
3.21 Frequency dependence of the real (M’) and imaginary (M”) parts of modulus isotherms for LZBB 4 glass at various temperatures. Inset (a) and (b): Normalized plots of real (M’) and imaginary (M”) electrical modulus against normalized frequency for LZBB 4 glass at same temperatures as shown in Fig. 3.21.
3.22 Inverse temperature dependence of relaxation time (τₑ) for all the LZBB glasses (Solid lines represent the linear fittings).
3.23 Frequency dependence of the conductivity, $\sigma (\omega)$, at various temperatures for LZBB 4 glass. Inset: The normalized conductivity isotherms for LZBB 4 glass at the various temperatures.

3.24 Complex impedance plots (experimentally) for LCBB 3 glass sample at different temperatures.

3.25 Arrhenius plots of dc conductivity (σ_{dc}) for all the LCBB glasses (Solid lines represent the linear fittings).

3.26 The real (M') and imaginary (M'') electric modulus spectra as a function of frequency for 30Li$_2$O·20CdO·30Bi$_2$O$_3$·20B$_2$O$_3$ glass at several temperatures.

3.27 Arrhenius plots of relaxation time ($\tau_{M''}$) for all the LCBB glasses (Solid lines represent the linear fittings).

3.28 Variation of M'/M_{∞} and M'/M'_{\max} with $\log (f/f_{M''})$ for LCBB 3 glass.

3.29 Normalized plots of electrical modulus against normalized frequency for all LCBB compositions at 623 K.

3.30 (a) Frequency dependent conductivity spectra (experimental) for LCBB 3 glass sample at various temperatures. Inset: Variation of s factor with the Bi$_2$O$_3$ content. (b) The normalized conductivity isotherms for LCBB 3 glass at the same temperature as shown in Fig. 3.30(a).

4.1 XRD patterns of all LZBS glasses.

4.2 XRD patterns of all LCBS glasses.

4.3 IR transmission spectra at RT for all the Li$_2$O.ZnO.Bi$_2$O$_3$.SiO$_2$ glasses (in MIR region).

4.4 IR transmission spectra at RT for all the LCBS glasses (in MIR region).

4.5 Compositional dependence of density (D_g), molar volume (V_g), hypothetical crystalline volume (V_C) and inset: difference between V_g and V_C (ΔV) for LZBS glasses. (The solid lines are guide to eye)

4.6 Compositional dependence of (a) density (D_g), (b) V_g and V_C and (c) ΔV (difference between V_g and V_C) of lithium cadmium bismuth silicate glasses. (The solid lines are guide to eye)

4.7 (a) The non-isothermal DSC curves for LZBS glasses showing characteristics temperatures such as glass transition temperature, exothermic peak and melting temperature are marked on the plot. The inset shows the variation of T_g with Bi$_2$O$_3$ content. (b) Non-isothermal DSC curves of LZBS 1 glass at various heating rates 5, 10, and 15 K/ min.

4.8 (a) Kissinger plots and (b) Mausita-Ozawa plots for LZBS glasses for glass transition temperatures.

4.9 (a) Kissinger plots and (b) Mausita-Ozawa plots for LZBS glasses for first crystalline peak.
4.10 The non-isothermal DSC curves for all LCBS glasses. The characteristic temperatures such as glass transition temperature, exothermic peak and melting temperature are marked on the plot. Inset (a): Non-isothermal DSC curves of LCBS 1 glass at various heating rates 5, 10, and 15 K/ min. Inset (b): The compositional dependence of T_g.

4.11 (a) Kissinger plots and (b) Mausita-Ozawa plots for LCBS glasses for glass transition temperatures.

4.12 (a) Kissinger plots and (b) Mausita-Ozawa plots for LCBS glasses for first crystalline peak.

4.13 Optical absorption coefficient spectra of 30Li$_2$O·20ZnO·xBi$_2$O$_3$·(50-x)SiO$_2$ glasses.

4.14 Optical transmission spectra of 30Li$_2$O·20ZnO·xBi$_2$O$_3$·(50-x)SiO$_2$ glasses at room temperature.

4.15 Tauc's plots of LZBS glasses for (a) $n = 2$ and (b) $n = 3$, respectively. Insert Fig. 4.15(b): Composition dependence of E_g for n=2 and n=3.

4.16 Variation of ln χ with $h \cdot$ for all the 30Li$_2$O·20ZnO·xBi$_2$O$_3$·(50-x)SiO$_2$ (LZBS) glasses.

4.17 Optical absorption coefficient spectra of 30Li$_2$O·20CdO·xBi$_2$O$_3$·(50-x)SiO$_2$ glasses at room temperature.

4.18 Optical transmission spectra of 30Li$_2$O·20CdO·xBi$_2$O$_3$·(50-x)SiO$_2$ glasses at room temperature.

4.19 Tauc's plots of 30Li$_2$O·20CdO·xBi$_2$O$_3$·(50-x)SiO$_2$ glasses for (a) $n = 2$ and (b) $n = 3$, respectively.

4.20 Composition dependence of E_g for n=2 and n=3.

4.21 Urbach’s plot for LCBS 4 glass

4.22 (a) Experimental Nyquist plots for LZBS 3 glass sample at various temperatures. (b) Experimental Nyquist plots for all 30Li$_2$O·20ZnO·xBi$_2$O$_3$·(50-x) SiO$_2$ glasses (LZBS) at 623K.

4.23 Reciprocal temperature dependence of dc conductivity (σ_{dc}) and relaxation time (τ_M) at different composition. Inset: Compositional variation of log σ_{dc} (at 623 K) and E_{dc}.

4.24 Frequency dependence of the real (M') and imaginary (M'') parts of modulus isotherms for LZBS 3 glass at various temperatures.

4.25 (a) Frequency dependence of the imaginary part of electric modulus (3D plot) for all LZBS glasses at 623K. (b) Normalized plots of electrical modulus against normalized frequency for LZBS 3 glass.

4.26 (a) Experimental frequency dependence of the conductivity, σ (w), at various temperatures for LZBS 3 glass. (b) The normalized conductivity isotherms for LZBS 3 glass at the same temperature as shown in Fig. 4.26(a).
(a) Experimental Nyquist plots for 30Li₂O-20CdO-xBi₂O₃-(50-x)SiO₂ (LCBS 3) glass at various temperatures. (b) Experimental Nyquist plots for all 30Li₂O-20CdO-xBi₂O₃-(50-x) SiO₂ glasses (LCBS) at 623K.

Arrhenius plots of dc conductivity (σ_d) and relaxation time (τ_M") for all the LCBS glasses (Solid lines represent the linear fittings). Inset: Compositional dependence of log σ_d at various temperatures.

Frequency dependence of the real (M') and imaginary (M'') electric modulus at different temperatures for LCBS 3 glass.

Frequency dependence of the imaginary part of electric modulus for all LCBS glasses at 623K.

Normalized plots of electrical modulus against normalized frequency for (a) LCBS 3 glass and (b) for all LCBS compositions at 623 K.

Frequency dependent conductivity spectra (experimental) for LCBS 3 glass sample at different temperatures. Inset: The normalized conductivity isotherms for LCBS 3 glass at the same temperature as shown in Fig. 4.32.

XRD patterns of all LBCB glasses.

FTIR transmission spectra for all the LBCB glasses (in MIR region) at RT.

Compositional dependence of (a) density and (b) molar volume of lithium bismuth cadmium borate glasses. Inset (b): Difference between V_g and V_C (ΔV) of LBCB glasses. (The solid lines are guide to eye)

(a) The non-isothermal DSC curves for LBCB 1 glass at various heating rates 5, 10, and 15 K/ min. The characteristic temperatures such as glass transition temperature, exothermic peak and melting temperature are marked on the plot. (b) The compositional dependence of T_g.

(a) Kissinger plots and (b) Mausita-Ozawa plots for LBCB glasses for glass transition temperatures.

(a) Kissinger plots and (b) Mausita-Ozawa plots for LBCB glasses for crystallization temperatures.

(a) Optical transmission spectra of all LBCB glasses. (b) Optical transmission spectra of 25Li₂O-30Bi₂O₃-35CdO-10B₂O₃ glass at room temperature.

Tauc's plots of 25Li₂O-30Bi₂O₃-35CdO-10B₂O₃ glass for (a) n = 2 and (b) n =3, respectively.

Urbach plot for all LBCB glasses.

(a) Complex impedance plots (experimentally) for LBCB 2 glass sample at different temperatures. (b) Complex impedance plots (experimentally) for all glass compositions at temperature 623 K.

Temperature dependence of dc conductivity (σ_d) and relaxation time (τ_M") at different composition.
5.12 (a) Frequency dependence of the real (M') and imaginary (M'') electric modulus at different temperatures for LBCB 2 glass. (b) Normalized plots of real (M') and imaginary (M'') electrical modulus against normalized frequency for LBCB 2 glass at different temperatures.

5.13 (a) Frequency dependence of the conductivity, $\sigma (\omega)$, at various temperatures for LBCB 2 glass. (b) Frequency dependence of the conductivity, $\sigma (\omega)$ for all LBCB glasses at 623K. (c) The normalized conductivity isotherms for LBCB 2 glass at the same temperature as shown in Fig. 5.13(a).

5.14 Frequency dependence of Log $\cdot(\cdot)$ at various temperatures for LBCB 2 glass. Inset: Temperature dependence of Log $\cdot(\cdot)$ for LBCB 2 glass at various frequencies.

5.15 Frequency dependence of tan \cdot at various temperatures for LBCB 2 glass. Inset: Temperature dependence of tan \cdot for LBCB 2 glass at various frequencies.