Chapter – 5

PROBLEMS FOR FURTHER STUDY
This chapter is devoted to the discussion on further possible developments of some results which we plan to study in our future work.

In chapter 2 we have proved that near rings are periodic with some additional conditions. We wish to study other rings which are periodic. In chapters 3 and 4 we have seen some properties of periodic, weakly periodic, quasi-periodic and generalized periodic rings. We would like to investigate other identities and properties of these rings.

In section 5.1, we discuss some results on D-rings and D*-rings. We prove that if \(R \) is a D-ring satisfying \(xy = (xy)^2 p(x,y) \), for all \(x, y \in R \) and \(p(x,y) \) is a polynomial in two noncommuting indeterminates \(x \) and \(y \), then \(R \) is either a zero ring or a periodic field. Also we prove that any normal D*-ring is either periodic or D-ring. In section 5.2, we show that if \(R \) is a weakly periodic-like ring satisfying \((xy)'' - y''x'' \) in the center of \(R \), then \(R \) is commutative. In section 5.3, we discuss certain properties of p-rings and generalized p-rings. Using these properties, we prove that if \(R \) is a generalized p-ring with central idempotents and \(J \) is commutative, then \(R \) is commutative.
5.1. Structure of D-rings and D*-rings

In this section, we discuss some results on D-rings and D*-rings. We prove that if \(R \) is a D-ring satisfying \(xy = (xy)^2 p(x,y) \) for all \(x, y \in R \) and \(p(x,y) \) is a polynomial in two non-commuting indeterminates \(x \) and \(y \), then \(R \) is either a zero ring or a periodic field. Also we prove that any normal D*-ring is either periodic or D-ring.

We know that a ring \(R \) is a D-ring, if its every zero divisor is nilpotent. A ring \(R \) is a D*-ring, if every zero divisor \(x \) in \(R \) can be written as \(x = a + b \), where \(a \in N, b \in P \) and \(ab = ba \). Nil ring, every domain of \(R \) and the ring of integers (mod \(p^k \)), \(p \) prime are examples of D-rings. Clearly every D-ring is a D*-ring, but converse is not true. A Boolean ring is a D*-ring but not a D-ring.

We start with the following properties of D-rings.

Lemma 5.1.1: Let \(R \) be a D-ring. Then \(aR \) is a nil right ideal for all \(a \in N \).

Proof: Since \(a^k = 0 \), \(a^{k-1} \neq 0 \) implies \(a^{k-1} (ax) = 0 \), and thus \(ax \in N \). Hence \(aR \) is a nil right ideal of \(R \). \(\square \)
Lemma 5.1.2: Let R be a D-ring. If e is an idempotent element of R, then $e = 0$ or $e = 1$.

Proof: Suppose $e^2 = e \neq 0$, and $x \in R$.

Then $e(ex-x) = 0$ and hence $ex - x = 0$.

Otherwise, e will be nilpotent, since R is a D-ring. Thus $e = 0$.

Similarly, $xe - x = 0$ for all x in R, and thus $e = 1$. □

Theorem 5.1.3: Let R be a D-ring such that N is an ideal of R. Then, either $R = N$ or R/N is a domain.

Proof: Suppose that $R \neq N$.

Let $\bar{x} = x + N$ and $\bar{y} = y + N$ be two elements in R/N such that $xy = 0$.

Then $xy \in N$.

This implies that $(xy)^m = 0$ and $(xy)^{m-1} \neq 0$ for some positive integer m.

Hence $(xy)^{m-1} (xy) = 0$.

This implies that y is a zero divisor or $(xy)^{m-1} x = 0$.

Therefore, y is a zero divisor or x is a zero divisor, since $(xy)^{m-1} \neq 0$.

Hence $y \in N$ or $x \in N$, so $\bar{x} = \bar{0}$ or $\bar{y} = \bar{0}$.

Thus R/N is a domain. □

Corollary 5.1.4: Let R be a D-ring with N commutative. Then either $R = N$ or N is an ideal and R/N is a domain.
Proof: If N is commutative, N is an additive subgroup of R, hence an ideal by Lemma 5.1.1.

This corollary follows from the above theorem.

Theorem 5.1.5: If R is a periodic D-ring, then R is either nil or local.

Further, if R has an identity element, then N is an ideal and R/N is a field.

Proof: Since R is periodic, for each $x \in R$, there exists a positive integer $k = k(x)$ such that x^k is idempotent [19]. Using Lemma 5.1.2, $x^k = 0$ or $x^k = 1$, and hence x is either nilpotent or invertible.

Therefore, R is nil or local.

If R has an identity element, then R is local and hence N is an ideal.

Thus R/N is a periodic division ring and hence R/N is a field.

Theorem 5.1.6: If R is a periodic D-ring, then $C(R)$ is nil.

Proof: If R is nil, there is nothing to prove.

Suppose $R \neq N$, and let $x \in R/N$.

Then $x^n = x^m$ for some integers $n > m \geq 1$.

It is easily verified that $x^{m(n-m)}$ is a nonzero idempotent, and hence by Lemma 5.1.2, $1 \in R$.

By theorem 5.1.5, R is local, N is an ideal, and R/N is a field.

Thus, $C(R)$ is nil.
Now we prove that a D-ring with a condition is either a zero ring or a periodic field.

Theorem 5.1.7: Let R be a D-ring such that for each $x, y \in R$ there exists a polynomial $p(x,y)$ in two noncommuting indeterminates, with integer coefficient, for which

$$xy = (xy)^2 p(x,y).$$ \hspace{1cm} 5.1.1

Then R is either a zero ring or a periodic field.

Proof: Theorem 1 of [26] states that any ring R satisfying 5.1.1 is a direct sum of a J-ring and a zero ring. In view of theorem 12 [9], a D-ring with 5.1.1 must be either a J-ring or a zero ring. By Lemma 5.1.2, D-rings which are also J-rings must be periodic division rings; and J-rings are commutative by Jacobson's famous "$d^n = a$ Theorem". \hfill \Box

Now we present a result on a ring R in which every zero divisor is potent.

Theorem 5.1.8: Let R be a ring in which every zero divisor is potent. Then $N = \{0\}$ and R is normal. Moreover, if R is not a domain, then $J = \{0\}$.

Proof: If $a \in N$, then a is a zero divisor and hence potent by hypothesis. So $a^n = a$ for some positive integer n, and since $a \in N$, there exist a positive integer k such that $0 = a^k = a$. So $N = \{0\}$.

Let e be any idempotent element of R and x is any element of R.

Then $ex - exe \in N$, and hence $ex - exe = 0$.
Similarly, \(xe = exe \). So \(ex = xe \) and \(R \) is normal.

Let \(x \) be a nonzero divisor of zero.

Then \(xJ \) consists of zero divisors, which are potent.

Therefore \(xJ = \{0\} \).

But then \(J \) consists of zero divisors, hence potent elements, and therefore \(J = \{0\} \).

Next we prove some results on \(D^* \)-rings.

Theorem 5.1.9: A ring \(R \) is a \(D^* \)-ring if and only if every zero divisor of \(R \) is periodic.

Proof: We assume \(R \) is a \(D^* \)-ring and let \(x \) be any zero divisor. Then

\[x = a + b, \ a \in N, \ b \in P, \ ab = ba. \]

So \((x - a) = b = b^n = (x - a)^n \).

This implies, since \(x \) commutes with \(a \), that \((x - a) = (x - a)^n = x^n + \text{sum of pairwise commuting nilpotent elements} \).

Hence \(x - x^n \in N \) for every zero divisor \(x \).

Since each such \(x \) is included in a subring of zero divisors, which is periodic by Chacron's theorem, \(x \) is periodic.

Suppose, conversely, that each zero divisor is periodic.

Then by the proof of Lemma 1 [17], \(R \) is a \(D^* \)-ring.

Theorem 5.1.10: If \(R \) is any normal \(D^* \)-ring, then either \(R \) is periodic or \(R \) is a \(D \)-ring. Moreover, \(aR \subseteq N \) for each \(a \in N \).
Proof: If R is a normal D^*-ring which is not a D-ring, then R has a central idempotent zero divisor e.

Then $R = eR \oplus A(e)$, where eR and $A(e)$ both consist of zero divisors of R, hence (in view of Theorem 5.1.10) are periodic. Therefore R is periodic.

Now consider $a \in N$ and $x \in R$.

Since ax is a zero divisor, hence a periodic element, $(ax)^j = e$ is a central idempotent for some j.

Thus $(ax)^{j+1} = (ax)\cdot ax = a^2y$ for some $y \in R$.

By repeating this argument we see that for each positive integer k, there exists m such that $(ax)^m = a^2w$ for some $w \in R$.

Therefore $aR \subseteq N$. □

Corollary 5.1.11: Let R be a D^*-ring which is not a D-ring.

If $N \subseteq C$, then R is commutative.

Proof: Since $N \subseteq C$, R is normal. Therefore commutativity follows from theorem 5.1.10 and a theorem of Herstein. □

Using the above results, we wish to try for some more properties of D-ring and D^*-rings.
5.2 Weakly periodic-like rings

In this section, we show that if R is a weakly periodic-like ring satisfying $(xy)^n - y^n x^n$ in the center of R, then R is commutative.

We know that a ring R is weakly periodic-like if every x in $R \setminus C$ can be written in the form $x = a + b$, $a \in N$, b potent ($b^k = b$ for some $k > 1$).

Throughout this section R denotes an associative ring, $N, C, C(R)$ and J denote the set of nilpotents, the center of R, the commutator ideal of R and the Jacobson radical of R respectively.

From [63, 10] we have the following properties of weakly periodic-like rings.

Theorem 5.2.1: [63] Let R be a weakly periodic-like ring.

(a) If N is an ideal, then for each x in R, either $x \in C$ or $x - x^n \in N$ for some integer $n = n(x) > 1$.

(b) Every ideal I of R is weakly periodic-like.

(c) $J \subseteq N$ or $J \subseteq C$.

(d) If $C(R) \subseteq J$, then N is an ideal and R/N is commutative.
Theorem 5.2.2: [63] If \(R \) is a weakly periodic-like ring with \(N \subseteq C \), then \(R \) is commutative.

Theorem 5.2.3: [63] Let \(R \) be a weakly periodic-like ring with \(N \) commutative. Then \(N \) is an ideal and \(R/N \) is commutative.

Theorem 5.2.4: [10] Let \(R \) be a weakly periodic-like ring such that each non-central element is uniquely expressible as a sum of a potent element and a nilpotent element. If \(N \) is commutative, then \(R \) is commutative.

Lemma 5.2.5: Let \(R \) be a weakly periodic-like ring with the set of nilpotents commutative and with idempotents central. If \(R \) has a property which implies commutativity in weakly periodic-like rings with identity and which is inherited by ideals, then \(R \) is commutative.

Proof: First we prove that the set \(P \) of potent elements is central.

Suppose \(a \in P \) with \(a^n = a, \ n > 1 \). 5.2.1

Let \(e = a^{-1} \). Then, since \(e \) is central idempotent, \(eR \) is a ring with identity.

Hence \(eR \) is weakly periodic-like which, in fact, is an ideal of \(R \).

The hypothesis of the Lemma,

\[eR \text{ is commutative.} \] 5.2.2

Therefore,

\[(e)(x) = (x)(e) \] for all \(x \) in \(R \). 5.2.3

Since \(e = a^{-1} \) is a central idempotent element of \(R \).
Hence 5.2.3 implies that

\[eax = exa = xae. \]

That is \(a^{n-1} x = x a^{n-1} \) or \(a^n x = xa^n \).

Thus, by 5.2.2, \(ax = xa \) for all \(x \) in \(R \).

This proves that the set \(P \) of potent elements of \(R \) is central.

To complete the proof, suppose \(x, y \in R \).

If \(x \in C \) or \(y \in C \), then clearly \([x, y] = 0 \).

So suppose \(x \notin C \) and \(y \notin C \).

Then by definition,

\[x = a + b, y = a' + b', a, a' \text{ nilpotent and } b, b' \text{ potent} \]

By 5.2.5, \(b \) and \(b' \) are central.

Hence \([x, y] = [a + b, a' + b'] = [a, a'] = 0 \), since \(N \) is commutative.

This proves the lemma. \(\square \)

Theorem 5.2.6: Let \(R \) be a weakly periodic-like ring, and let \(n \) be a fixed positive integer. Suppose \(R \) is \(n(n+1) \) torsion free and, for all \(x, y \in R \), \((xy)^n - y^n x^n \in C \). Suppose, further that the set \(N \) of nilpotents is commutative. Then \(R \) is commutative.

Proof: Let \(\mathcal{P} \) be the ring property \((xy)^n - y^n x^n \) is always central.

Clearly, this property is satisfied by all subrings and all homomorphic images of any subring of \(R \).
Moreover, this property \(\mathcal{P} \) is not satisfied by any complete matrix ring \(D_n \) of \(n \times n \) matrices over any division ring \(D \), where \(n > 1 \), as can be seen by taking \(x \) and \(y \) in \(D_n \) to be

\[
x = E_{11}, \quad y = E_{11} + E_{12}, \quad E_{11}, E_{12} \in D_n.
\]

Hence, by theorem 2 iii [10], we have

\[
\text{if } x \in R \setminus C, \text{ then } x - x^m \in N \text{ for some integer } m > 1. \quad 5.2.6
\]

Moreover, by theorem 2(ii) [10], \(N \) is an ideal which is commutative.

So \(N \) is a commutative ideal and hence \(N^2 \subseteq C \). \(5.2.7 \)

We now distinguish two cases

Case 1: \(1 \in R \). Suppose \(a \in N, b \in R \).

Then, by hypothesis,

\[
[(a + 1)b]^n - b^n (a + 1)^n \in C \text{ and } [b(a + 1)]^n = (a + 1)^n b^n \in C.
\]

By subtracting and using \(N^2 \subseteq C \), we get

\[
(n + 1) [a, b^n] \subseteq C,
\]

and since \(R \) is \(n(n + 1) \)-torsion free, we conclude that

\[
[a, b^n] \subseteq C \text{ for all } a \in N, b \in R. \quad 5.2.8
\]

Since \(N \) is commutative, 5.2.8 implies

\[
[a, b^n] \subseteq N \text{ for all } a \in N, b \in R. \quad 5.2.9
\]

Now, suppose \(x_1, x_2, \ldots, x_k \in R \). Since \(R/C(R) \) is commutative,

\[
(x_1 \ldots x_k)^n - x_1^n \ldots x_k^n \subseteq C(R) \subseteq N, \text{ by } 5.2.7.
\]

But \(N \) is commutative, and hence
By combining 5.2.9 and 5.2.10, we conclude that

\[[a, x_1^{n} \ldots x_k^{n}] = [a, x_1^{n} \ldots x_k^{n}], a \in N. \]

Let S be the subring of R generated by the n-th powers of elements of R.

Then by 5.2.11

\[[a, x] \in C(S) \text{ for all } a \in N(S), x \in S, \]

where $N(S)$ and $C(S)$ denote the set of nilpotents of S and the center of S, respectively.

Since S is periodic, $N(S)$ is commutative, and from 5.2.12, Lemma 3.2.3 shows that S is commutative, and hence

\[[x^n, y^n] = 0 \text{ for all } x, y \in R. \]

We continue to assume that $a \in N, b \in R$.

Then by hypothesis and the facts that $R/C(R)$ is commutative and $C(R) \subseteq N$, we have

\[[((1 + a)b)^n - b^n (1 + a)^n = c \in C \]

and \[[b(1 + a))^n - (1 + a)^n b^n = c' \in C. \]

5.2.14 and 5.2.15 imply the following:

\[b [(1 + a)b]^n (1 + a) - b^{n+1} (1 + a)^{n+1} = bc (1 + a), \]

\[(1 + a) [b(1 + a))^n b - (1 + a)^{n+1} b^{n+1} = (1 + a) c' b. \]

We note that $c \in N$, and $N^2 \subseteq C$.

Hence $bca \in C$.

\[\text{S.K.U.LIBRARY} \]
\[\text{Acc. No.142374} \]
\[\text{Call.No.} \]
\[\text{91} \]
Similarly $ac'b \in C$.

In view of this, and the facts that $c \in C$ and $c' \in C$,

we see that

$$[bc(1 + a), b] = 0 \text{ and } [(1 + a)c'b, b] = 0.$$

Hence by 5.2.16 and 5.2.17, we conclude that

$$\{b(1 + a)\}^{n+1} - b^{n+1} (1 + a)^{n+1} \text{ commutes with } b,$$
and $$\{(1 + a)b\}^{n+1} - (1 + a)^{n+1} b^{n+1} \text{ commutes with } b \text{ also.}$$

Recalling that $N^2 \subseteq C$, and subtracting 5.2.18 from 5.2.19, we obtain

$$n[b^{n+1}, a] \text{ commutes with } b \text{ for all } a \in N, b \in R.$$

Since N is commutative and R is $n(n + 1)$ - torsion free, 5.2.20, implies,

$$[a, b^{n+1}] \text{ commutes with } b \text{ for all } a \in N, b \in R.$$

By 5.2.13, $[x^n, y^n] = 0$ for all $x, y \in R, 1 \in R$, and R is n-torsion free.

Hence, we see that

$$[a, b^n] = 0 \text{ for all } a \in N, b \in R.$$

Now, 5.2.21 implies that

$$ab^{n+2} - b^{n+1} ab = ba b^{n+1} - b^{n+2} a \text{ and by 5.2.22, we get}$$

$$b^n ab^2 - b^{n+1} ab = b^{n+1} ab - b^{n+2} a.$$

Hence $b^n \{[a, b] \} = b^n [b[a, b]]$.

Thus $b^n [[a, b], b] = 0$ for all $a \in N, b \in R$.

We replacing b by $(b + 1)$ in this last equation give us

$$(b + 1)^n [[a, b], ab] = 0 \text{ for all } a \in N, b \in R.$$
By a Lemma in [50], 5.2.22 and 5.2.23 imply that
\[[[a, b], b] = 0 \text{ for all } a \in N, b \in R. \] 5.2.24

Since \(R \) is periodic, \(N \) is commutative, and 5.2.24 holds, we see that \(R \) is commutative by Lemma 3.2.3.

Case 2: \(R \) does not have an identity. In this case, we first prove the following:

Claim 1: The idempotents of \(R \) are central.

Let \(e^2 = e \in R, r \in R \). By hypothesis,
\[[e (e + er - ere)]^n - (e + er - ere)^n e^n \in C. \]

Hence \(er - ere \in C \). Therefore
\[er - ere = e (er - ere) = (er - ere)e = 0, \]
and thus \(er - ere \). Similarly \(re - ere \).

Thus \(e \) is central.

Claim 2: Under the hypothesis of theorem, if \(\sigma : R \rightarrow S \) is a homomorphism of \(R \) onto \(S \), then the nilpotents of \(S \) coincide with \(\sigma (N) \), where \(N \) is the set of nilpotent of \(R \).

This claim has been stated in Lemma 4 [7].

To complete the proof of the theorem, first me recall that \(R \) is isomorphic to a subdirect sum of subdirectly irreducible rings \(R_i \). Suppose that \(\sigma_i : R \rightarrow R_i \) is the natural homomorphism of \(R \) onto \(R_i \).
Let \(x_i \in R_i \) and let \(\sigma_i(x) = x_{i, x} \in R_i \).

Since \(R \) is periodic, \(x^s = x^r \) for some integers \(s > r > 0 \),

Hence \(e = x^{(s-r)r} \) is idempotent. 5.2.25

By claim 1, \(e \) is central in \(R_i \), and hence \(\sigma_i(e) \) is a central idempotent of \(R_i \).

Since \(R_i \) is subdirectly irreducible, \(\sigma_i(e) = 0 \) or \(\sigma_i(e) = 1 \) if \(1_i \in R_i \).

Case A: \(R_i \) does not have an identity.

In this case \(\sigma_i(e) = 0 \) and hence, \(x_i^{(s-r)r} = 0 \).

This \(R_i \) is nil and hence, by claim 2, \(R_i = \sigma_i(N) \).

By hypothesis, \(N \) is commutative. Therefore \(R_i \) is commutative.

Case B: \(R_i \) has an identity \(1_i \).

We note that \(R_i \) need not be \(n(n+1) \)-torsion free.

So let \(\sigma_i(e_0) = 1_i \), \(e_0 \in R_i \), and we choose integers \(s > r > 0 \) such that \(e_0 = e_0^r \).

Let \(e = e_0^{(s-r)r} \).

Then \(e \) is idempotent and, moreover, \(\sigma_i(e) = 1_i^{(s-r)r} = 1_i \).

Also, \(e \) is central and hence \(e \) is a nonzero central idempotent element of \(R_i \).

Thus, \(eR_i \) is a ring with identity \(e \).

Because \(eR_i \) inherits all the hypotheses of the ground ring \(R \), it follows by the first part of the proof that \(eR_i \) is commutative and hence \([ex, ey] = 0 \) for all \(x, y \in R_i \).
This implies

\[[\sigma_i(x), \sigma_j(y)] = 0 \text{ for all } x, y \in R. \]

Thus \(R_i = \sigma_i(R) \) is again commutative. Hence the ground ring \(R \) is commutative, and the theorem is proved. □

We wish to study results concerning commutativity of weakly periodic-like rings with other identities in the center.

5.3 Generalized p-rings with central idempotents

The concept of p-rings, (p prime) was defined by McCoy and Montgomery [48]. They proved that every p-ring is a direct product of field \(F_p \), and every p-ring is isomorphic to a subring of a direct product of fields \(F_p \). Moisil [49] developed the concept of unitary p-rings, where \(p = 3 \). In [46] Loustau shown that if \(R \) is a p-ring with \(p^2 \), then \(R \) is isomorphic to a subdirect sum of copies of the Galois field with \(p \) elements. Yaqub [62] introduced the concept of generalized p-rings and proved that generalized p-ring is commutative under some restrictions.

In this section, we discuss certain properties of p-rings and generalized p-rings. Using these properties, it is proved that if \(R \) is a generalized p-ring with central idempotents and \(J \) is commutative, then \(R \) is commutative.
We know that a ring R is a p-ring (p-prime) in which $x^p = x$ and $px = 0$ for all x in R. A ring R is a generalized p-ring of prime characteristic p if $x^p y - xy^p \in N$ for all x, y in $R\setminus(N \cup J \cup C)$.

The Boolean rings are simple 2-rings and

$$R = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right| 0 \leq 1 \in GF(2) \right\}$$

is a generalized 2-ring but not a 2-ring. In this section F_p denotes field of integers reduced modulo p, N, C and J denote the set of nilpotents, the center of R and Jacobson radical of R respectively.

We have the following properties of p-rings, proved by McCoy and Montgomery [48] and Loustau [46].

Theorem 5.3.1: [48] A p-ring R may be imbedded in a p-ring R^* which contains a unit element.

Theorem 5.3.2: [48] Every finite p-ring contains a unit element and is a direct sum of field F_p.

Theorem 5.3.3: [48] If R is any p-ring containing a unit element e and if a is any nonzero element of R, there exists a homomorphism h of R into F_p such that $h(a) \neq 0$.

Theorem 5.3.4: [48] If R is any p-ring, it is isomorphic to a subring of a direct sum of rings F_p.

Theorem 5.3.5: [46] Let R be a p-ring with $p \neq 2$, then R is associative and commutative. Thus, R is a subdirect sum of copies of $GF(p)$.

Now we present some properties of generalized p-rings.

Theorem 5.3.6: Suppose R is a generalized p-ring (p prime) with identity and with central idempotents. Suppose, further, that J is commutative. Then R is commutative.

Proof: First we prove the following result:

If $b \in R$ satisfies the equation $b^p = b$, then b is central. 5.3.1

Let $r \in R$. Since b^{p-1} is idempotent, b^{p-1} is central, and hence

$$b^{p-1} (rb - br) = rb^p - b^p r = rb - br.$$

This implies that

$$(b^{p-1} - 1) (rb - br) = 0 \text{ for all } r \in R. \quad 5.3.2$$

Since R is of prime characteristic p, an elementary number theoretic result shown that 5.3.2 is equivalent to

$$(b + 1) (b + 2) \ldots \ldots (b + (b + 1)) (rb - br) = 0, \text{ } r \in R. \quad 5.3.3$$

Furthermore, since R is of prime characteristic p, we have

$$b^p = b \text{ implies } (b + 1)^p = (b + 1).$$

Hence the above argument can be repeated with b replaced by $b + 1$ throughout.

Thus 5.3.3 now yields

$$(b + 2) (b + 3) \ldots \ldots (b + (p - 1)) (b + p) (r + (b + 1) - (b + 1)r) = 0,$$
and hence
\[b(b + 2)(b + 3) \ldots \ldots \ldots (b + (p - 1))(rb - br) = 0. \] 5.3.4

Subtracting 5.3.3 from 5.3.4, we obtain
\[1 \cdot (b + 2)(b + 3) \ldots \ldots \ldots (b + (p - 1))(rb - br) = 0. \] 5.3.5

Repeating this argument, where \(b \) is replaced by \(b + 1 \) again throughout, we see that 5.3.5 now yields
\[1 \cdot (b + 3)(b + 4) \ldots \ldots \ldots (b + (p - 1))(b + p)(rb - br) = 0. \]

Hence
\[1 \cdot b(b + 3)(b + 4) \ldots \ldots \ldots (b + (p - 1))(rb - br) = 0. \] 5.3.6

Subtracting 5.3.6 from 5.3.5, we obtain
\[1 \cdot 2 \cdot (b + 3)(b + 4) \ldots \ldots \ldots (b + (p - 1))(rb - br) = 0. \]

By continuing this process, we eventually obtain
\[(p - 1)! (rb - br) = 0 \text{ for all } r \in R. \] 5.3.7

Since \((p - 1)! \) is relatively prime to the prime characteristic \(p \) of \(R \), 5.3.7 yields \(rb - br = 0 \) for all \(r \) in \(R \), and hence \(b \) is central, which proves 5.3.1.

Because \(R \) is an \(N_0 \)-ring with central idempotents, by Lemma 2.4 [62], \(N \subseteq J \).

If we combine this with \(x^p y - xy^p \in N \) yields \(x^p y - xy^p \in N \) for all \(x, y \) in \(R(J \cup C) \), since \(N \subseteq J \). 5.3.8

We now prove that
\[J \subseteq C. \] 5.3.9
Suppose not. Then there exists an element \(j \in J \notin C \), and thus for some \(x \in R \), \([x, j] \neq 0\), where \([x, j] = xj - jx\).

Since, by hypothesis, \(J \) is commutative, \(x \notin J \).

Hence \(x \notin (J \cup C) \).

Since, \([x + 1, j] = [x, j] \neq 0\), we see that \(x + 1 \notin J \cup C \) either.

Hence, by 5.3.8, \(x^p(x + 1) - x(x + 1)^p \in N \), which implies that \(x^p - x \in N \), since \(R \) is of prime characteristic \(p \).

Hence \((x - x^p), (x - x^p)^p, (x - x^p)^{p^2}, \ldots, (x - x^p)^{p^{k+1}}\) are pairwise commuting nilpotent elements of \(R \), which implies that

\[
(x - x^p) + (x - x^p)^p + (x - x^p)^{p^2} + \ldots + (x - x^p)^{p^{k+1}} \in N. \tag{5.3.10}
\]

Since \(R \) is of prime characteristic \(p \), 5.3.10 implies that

\[
x - x^p + x^p - x^{p^2} + x^{p^2} - x^{p^3} + \ldots + x^{p^{k+1}} - x^{p^k} \in N,
\]

which simplifies to

\[
x - x^{p^k} \in N \text{ for all positive integer } k. \tag{5.3.11}
\]

Since, in particular, \(x - x^p \in N \), we have \((x - x^p)^{p^{k_0}} = 0\) for some positive integer \(k_0 \).

Hence

\[
x^{p^{k_0}} = (x^{p^{k_0}})^p. \tag{5.3.12}
\]

Therefore, by 5.3.1 and 5.3.12, we conclude that

\[
x^{p^{k_0}} \in C. \tag{5.3.13}
\]

Hence \(x = (x - x^{p^{k_0}}) + x^{p^{k_0}}; (x - x^{p^{k_0}}) \in N \) by 5.3.11,
\[x^{p^{n}} \in C, \quad 5.3.14 \]

by 5.3.13.

Since \(N \subseteq J \), 5.3.14 implies that

\[x = a + b, \quad a = x - x^{p^{n}} \in J, \quad b = x^{p^{n}} \in C. \quad 5.3.15 \]

Hence \([x, j] = [a + b, j] = [a, j] + [b, j] = 0\), since \(J \) is commutative.

Thus \([x, j] = 0\), a contradiction.

This contradiction proves 5.3.9 and hence \(J \subseteq C \). Since \(N \subseteq J \), \(N \subseteq C \), and thus 5.3.8 implies that

\[x^{p} - x \in N \text{ for all } x, y \in R \setminus C, \quad 5.3.16 \]

Now, suppose \(x \not\in C \), and hence \(x + 1 \not\in C \).

By 5.3.16, \(x^{p}(x + 1) - x(x + 1)^{p} \in N \subseteq C \).

Hence \(x^{p} - x \in C \), since \(R \) is prime characteristic \(p \). This implies that \(x - x^{p} \in C \) for all \(x \) in \(R \).

Hence by Lemma 2.3 [62], \(R \) is commutative, and the theorem is proved. \(\square \)

Now we prove the characterization of generalized p-rings.

Theorem 5.3.7: Suppose \(R \) is a generalized p-ring (p prime) and \(R \) is weakly periodic-like. Suppose, Further, that the set \(N \) of nilpotents is commutative, and all idempotents are central. Then \(R \) is commutative.

Proof: By Lemma 2.5 [62], \(J \subseteq N \cup C \), and hence \(J \) is commutative, since \(N \) is commutative.
We Now distinguish two cases.

Case 1: \(1 \in R \). Then, by theorem 5.3.6, \(R \) is commutative, since \(J \) is commutative.

Case 2: \(1 \not\in R \). If zero is the only potent element of \(R \), then by definition of a weakly periodic-like ring, \(R = N \cup \{0\} \).

Hence \(R \) is commutative, since \(N \) is commutative. Thus we assume that \(R \) has a nonzero potent element.

Let \(a \) be any nonzero potent element of \(R \).

Let \(a^n = a \) with \(n > 1 \), and let \(e = a^{n-1} \).

Then \(e \) is a nonzero idempotent \(\text{ hypothesis, must be central.} \)

Hence \(eR \) is a ring with identity. Moreover, \(eR \) is weakly periodic-like.

Also, \(eR \) is a generalized p-ring because \(eR \) satisfies the condition imposed on \(R \), since the Jacobson radical of \(eR \) is \(eJ \), where \(J \) is the Jacobson radical of \(R \). Thus, \(eR \) is a ring with identity which satisfies all of the hypotheses of the theorem.

Hence by Case 1, \(eR \) is commutative, which implies that \(e[x, y] = 0 \) for all \(x, y \) in \(R \).

In particular, \(e[a, y] = 0 \) for all \(y \) in \(R \) and thus \(a^{n-1}[a, y] = 0 \) for all \(y \) in \(R \), since \(e = a^{n-1} \).

Since \(a^n = a \) and \(a^{n-1} \) is central, we conclude that \(ay = ya \) for all \(y \) in \(R \).

If follows that
all potent elements of R are central.\hfill 5.3.17

To complete the proof, let $x, y \in R$ and suppose $x \notin C$ and $y \notin C$.

Then, by definition of a weakly periodic-like ring, $x = a + b$, $y = a' + b'$; a, a' nilpotent; b, b' potent.

Hence, using 5.3.17 and the hypothesis that N is commutative, we see that

$$[x, y] = [a + b, a' + b'] = [a, a'] = 0.$$

Thus R is commutative, and the theorem is proved.\hfill \square

We wish to try for further properties of generalized p-rings.