LIST OF TABLES

Table 2.1: Important chromophores and auxochromes
Table 2.2: Classification of dyes on the basis of chromophores
Table 2.3: Classification of dyes on the basis of application
Table 2.4: Major pollutant types in textile wastewaters, their origin and relevance/impact in biological treatment
Table 2.5: Characteristics of dye house wastewater
Table 2.6: Regulations on industrial effluent discharge
Table 2.7: Mutagenicity of various commercial dyes
Table 2.8: Various methods for the treatment of dye wastewater
Table 2.9: Evaluation of various technologies for the treatment of textile effluents
Table 2.10: Dye decolourization by bacterial / actinomycetes cultures
Table 2.11: Decolourization of dyes by white-rot fungi
Table 2.12: Decolourization of dyes by Phanerochaete chrysosporium
Table 3.1: Commercial textile dyes used in this study
Table 3.2: Biological dyes used in this study
Table 3.3: Genotypes of Salmonella typhimurium strains used for Ames mutagenicity testing
Table 3.4: Genotypes of Bacillus subtilis strains used for rec mutagenicity testing
Table 3.5: Dyes used in preparation of synthetic dye effluent
Table 3.6: Supplements added to soil for bioremediation
Table 4.1: Spontaneous reversion and reversion with diagnostic mutagens
Table 4.2: Ames test to detect the mutagenicity of commercial textile dyes using four tester strains of Salmonella typhimurium in the absence and presence of S9 mixture.
Table 4.3: Mutagenic sensitivity of rec~ strains to mitomycin C
Table 4.4: rec-assay using standard diagnostic mutagens
Table 4.5: *rec*-assay to detect mutagenicity of commercial textile dyes using *rec*⁻ and *rec*⁺ strains of *B. subtilis* in the absence and presence of S9 mixture.

Table 4.6: *rec*-assay to detect mutagenicity of biological textile dyes using *rec*⁻ and *rec*⁺ strains of *B. subtilis* in the absence and presence of S9 mixture.

Table 4.7: Correlation between Ames and *rec*-assays with respect to mutagenicity of commercial textile dyes as well as biological dyes.

Table 4.8: Effect of the sequence of steps involved in physicochemical treatment of individual dyes/ dye effluent on decolourization.

Table 4.9: % decolourisation of dye samples after standardized physicochemical treatment (PT I).

Table 4.10: Effect of lime on % decolourisation of dyes.

Table 4.11: Comparison of standardized physicochemical treatment with lime treatment with respect to colour removal of dye samples.

Table 4.12: Characteristics of mutants obtained with UV and NTG alongwith their quantitative assay for effluent decolourization.

Table 4.13: Comparative analysis of the Kirk’s medium with modified medium with respect to decolourization of synthetic dye effluent* by *P.chrysosporium*.

Table 4.14: TLC Rf values of monoazo dye -Red GTL- and its degradation products

Table 4.15: Mass spectra of monoazo dye -Red GTL- and its degradation products

Table 4.16: Physical and chemical characterization of soil used for bioremediation

Table 4.17: Quantitation of extraction of dyes from soil* with different organic solvents.

Table 4.18: Colony morphology and growth requirement of bacterial isolates from soil samples

Table 4.19: Dye plate assay for decolourization of selective dyes by Isolates.

Table 4.20: Laboratory bioremediation of soil contaminated with 0.02% w/w dye solution for eight weeks.