LIST OF FIGURES

Fig. 2.1: Proposed aerobic flavin mediated reduction of azo dyes leading to radicals or hydroazo intermediates.

Fig. 2.2: Aerobic buffering of riboflavin semiquinone-generated azo-anion radicals, SOD, superoxide dismutase.

Fig. 2.3: Major structural units which lead to a chemical being classed as structure-activity positive.

Fig. 2.4: Possible process technologies, both commercial and experimental, for the treatment and reuse of final effluents of textile mills.

Fig. 2.5: Proposed pathway for degradation of the azo dye Mordant Yellow 3 by a mixed bacterial community.

Fig. 2.6: A view of the crystallographically determined structure of lignin peroxidase.

Fig. 2.7: Schematic representation of the complete MnP polypeptide chain.

Fig. 2.8: Proposed mechanism for alternate asymmetrical and symmetrical cleavages of sulfonated azo dyes by *Phanerochaete chrysosporium* peroxidases.

Fig. 3.1: Structures of some of the commercial textile dyes used in this study.

Fig. 3.2: Structures of some of the biological dyes used in this study.

Fig. 4.1: Ames assay: Dose-dependent response to commercial textile mutagenic dyes inducing frameshift mutation in TA98 tester strain.

Fig. 4.2: Ames assay: Dose-dependent response to mutagenic disperse dyes.

Fig. 4.3: Ames assay: Dose-dependent response to mutagenic acidic dyes.

Fig. 4.4: Comparison of mutagenic sensitivity to spores made by lysozyme treatment and temperature treatment for use in rec-assay.

Fig. 4.5: rec-assay: Dose dependent response to mutagenic commercial textile dyes.

Fig. 4.6: rec-assay: Dose dependent response to mutagenic biological dyes.
Fig. 4.7: Effect of ferrous ion concentration, hydrogen peroxide concentration, UV exposure and temperature treatment on % decolourization of representative dyes.

Fig. 4.8: Profiles of degradation of synthetic dye effluent under physicochemical treatment.

Fig. 4.9: Mutagenicity of dyes before and after the sequential physicochemical treatment.

Fig. 4.10: Comparison of 5 d old liquid culture of white-rot fungi P. chrysosporium, M. verrucaria, G. ludidum and an algal strain – C. vulgaris for degradation of synthetic textile dye effluent (0.1 g/l).

Fig. 4.11: Effect of (a) spore density; (b) % spore inoculum and (c) day of dye addition to medium on biodegradation of synthetic textile dye effluent (0.1 g/l) by 5 d old liquid culture of P. chrysosporium.

Fig. 4.12: Effect of (a) age and (b) concentration of mycelial inoculum on biodegradation of synthetic effluent (0.1 g/l) by 5d old liquid culture of P. chrysosporium.

Fig. 4.13: Biodegradation at different concentrations of synthetic dye effluent by 5 d old liquid culture of P. chrysosporium.

Fig. 4.14: Effect of different buffers on biodegradation of synthetic textile dye effluent (0.1 g/l) by 5 d old liquid culture of P. chrysosporium.

Fig. 4.15: Effect of nutrient starvations on biodegradation of synthetic textile dye effluent (0.1 g/l) by 5 d old liquid culture of P. chrysosporium.

Fig. 4.16: Effect of 0.5% surfactants on biodegradation of synthetic textile dye effluent (0.1 g/l) by 5 d old liquid culture of P. chrysosporium.

Fig. 4.17: Effect of addition of different concentration of veratryl alcohol on biodegradation of synthetic textile dye effluent by 5 d old liquid culture of P. chrysosporium.

Fig. 4.18: Effect of different concentration of ions (a) Mg$^{2+}$ (b) Zn$^{2+}$ and (c) Cu$^{2+}$ on biodegradation of synthetic textile dye effluent (0.1 g/l) by 5 d old liquid culture of P. chrysosporium.

Fig. 4.19: Effect of agitation/ temperature shift on biodegradation of synthetic textile dye effluent (0.1 g/l) by 5 d old liquid culture of P. chrysosporium.
Fig. 4.20: Effect of culturing of *P. chrysosporium* in air and in 100% saturated oxygen on biodegradation of synthetic textile dye effluent (0.1 g/l) by 5 d old liquid culture.

Fig. 4.21: Effect of addition of oils on biodegradation of synthetic textile dye effluent (0.1 g/l) by 5 d old culture of *P. chrysosporium*.

Fig. 4.22: Increase in % decolourization, lignin peroxidase enzymatic activity and biomass under improved conditions over Kirk’s medium.

Fig. 4.23: Increase in decolourization of (a) anthraquinone; (b) azo and (c) miscellaneous dyes under improved culture conditions over Kirk’s medium by 5 d old liquid culture of *P. chrysosporium*.

Fig. 4.24: Mass spectra of undegraded and degraded (biologically) monoazo dye –Red GTL.

Fig. 4.25: Profiles of degradation of synthetic dye effluent under combined treatments.

Fig. 5.1: Proposed mechanism for the degradation of monoazo dye -Red GTL- by lignin and manganese peroxidase of *P. chrysosporium*.

LIST OF PLATES

Plate 1: Thin layer chromatography of degradation products of monoazo dye -Red GTL- when physicochemically treated.

Plate 2: Thin layer chromatography of degradation products of monoazo dye -Red GTL- when biologically treated with enzymes of *P. chrysosporium*.

Plate 3: *Bacillus subtilis* rec-assay on monoazo dye -Red GTL- before and after the biological treatment with lignin peroxidase of *P. chrysosporium*.

viii