FIGURE INDEX

CHAPTER III

Fig. 3.1 Energy level diagram and possible transitions 30
Fig. 3.2 Schematic diagram showing the emission of characteristic K X-rays and Auger electrons 32

CHAPTER IV

Fig. 4.1 Sample, excitor and detector geometry set-up (a) direct fluorescence mode (b) secondary fluorescence mode 46
Fig. 4.2 Block diagram of the X-rays detection system 50
Fig. 4.3 Relative efficiency curve for 6 mm Φ x 5.5 mm Si(Li) detector using radioisotopes and metallic foils for the geometry used in actual experiments 58
Fig. 4.4 Schematic diagram showing the arrangement of source target and detector in reflection geometry set-up 61
Fig. 4.5 Block diagram of the sample preparation unit by drying sample solution on rotating substrate 66
Fig. 4.6 Sample holder for the collection of aerosol samples 69
Fig. 4.7 Block diagram of the gamma-ray spectrometer 74
Fig. 4.8 Decay scheme of Pb-210 76

CHAPTER V

Fig. 5.1(a) X-ray spectra of Mn and Mo taken with 3.14 and 25.3 keV excitation energies respectively, using Si(Li) detector 83
Fig. 5.1(b) X-ray spectra of Sb and Cs taken with 46.9 and 59.5 keV excitation energies respectively, using Si(Li) detector.

Fig. 5.2 (a & b) Comparison of measured and theoretically calculated values of (a) K_α and (b) K_β, XRF cross-sections for elements with $23 \leq Z \leq 55$ as a function of energy.

Fig. 5.3 L X-ray spectrum of Pb taken with 22.6 keV excitation energy using Si(Li) detector.

Fig. 5.4 Comparison of experimental and theoretical $L(L_{\alpha}, L_{\alpha\alpha}, L_{\alpha\beta}, L_{\beta\beta})$ XRF cross-sections for Pb as a function of energy.

Fig. 5.5 (a & b) Counts per second under the K_α X-ray peaks of various elements, in tomato leaves (NBS, SRM No. -1573), as a function of thickness
(a) K, Ca, Mn and Fe
(b) Zn, Br, Rb and Sr

Fig. 5.6 Absorption correction factor (β) as a function of thickness.

Fig. 5.7 Critical thickness (mg/cm2) as a function of atomic number.

Fig. 5.8 X-ray spectrum of blank, taken in the form of thick pellet of cellulose with Cd-109 exciter using Si(Li) detector.

Fig. 5.9 (a-e) X-ray spectra of NBS standards, taken with Si(Li) detector using Cd-109 exciter.
(a) Bovine liver (NBS, SRM No. 1577) 109
(b) Orchard leaves (NBS, SRM No. 1571) 110
(c) Pine needle (NBS, SRM No. 1575) 111
(d) Spinach (NBS, SRM No. 1570) 111
(e) Tomato leaves (NBS, SRM No. 1573) 111

CHAPTER VI

Fig. 6.1 X-ray spectra of blank (a→Whatman filter, no.-42 and b→Millipore filter) taken on Si(Li) detector with Fe-55 exciter 116

Fig. 6.2 X-ray spectra of blank (a→Whatman filter, no-42 and b→Millipore filter) taken on Si(Li) detector with Cd-109 exciter 116

Fig. 6.3 X-ray spectra of ground water taken on Si(Li) detector with:
(a) Fe-55 exciter 116
(b) Cd-109 exciter 117

Fig. 6.4 X-ray spectra of air particulate sample collected from a pollution free area, taken with Si(Li) detector using:
(a) Fe-55 exciter 124
(b) Cd-109 exciter 125

Fig. 6.5 Dendogram showing the clustering coefficient between the elements detected in pollution free area. 130

Fig. 6.6 X-ray spectrum of air particulate sample collected from a polluted area, taken with Si(Li) detector using Cd-109 exciter. 134

Fig. 6.7 Dendogram showing the clustering coefficient between the elements detected in polluted area. 137
CHAPTER VII

Fig. 7.1 X-ray spectra of normal mouse organs/tissues, taken with Si(Li) detector using Cd-109 exciter;
 (a) liver, kidneys and lungs
 (b) blood-cells and plasma
 (c) femur, brain and muscles
 (d) heart, spleen and pancreas

Fig. 7.2 X-ray spectrum of automobile exhaust particulate, collected from a box, where the exhaust was given to the experimental animals, taken with Cd-109 exciter using Si(Li) detector.

Fig. 7.3 Concentration of TSP, Pb and Br, in the automobile exhaust particulate, collected from a box, where the exhaust was given to the experimental animals, as a function of time.

Fig. 7.4 X-ray spectra of various organs/tissues of automobile exhaust-exposed animals, taken with Si(Li) detector using Cd-109 exciter;
 (a) liver, kidneys and lungs
 (b) blood-cells and plasma
 (c) femur, brain and muscles
 (d) heart, spleen and pancreas

Fig. 7.5 Average water intake by various groups of animals.

CHAPTER VIII

Fig. 8.1 Uptake, distribution and elimination of Pb-210 in mouse organs/tissues;
 (a) whole-body, blood-cells and plasma
 (b) liver, kidneys, pancreas and lungs
 (c) stomach, small-intestine and large-intestine
 (d) heart, muscles, spleen and femur.
Fig. 8.2 Comparison of maximum level of percentage uptake in mouse blood-cells, plasma (uptake per ml) and various organs (uptake per gram).