LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Figure Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1(a)</td>
<td>π-molecular orbitals of benzene.</td>
<td>4</td>
</tr>
<tr>
<td>2.1(b)</td>
<td>Excited states of benzene</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Jablonski diagram</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Dependence of the quenching rate constant of benzene fluorescence on the electron affinity of haloalkane quenchers.</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Fluorescence decay curve of toluene solution.</td>
<td>68</td>
</tr>
<tr>
<td>4.1</td>
<td>The fluorescence spectra of benzene solution in cyclohexane in the presence and absence of haloalkanes.</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>The Stern-Volmer plot for the fluorescence quenching of 0.001 M Benzene solution in Cyclohexane by TCM at $\lambda_{ex}=240$ nm, $T=303.15$ K</td>
<td>75</td>
</tr>
<tr>
<td>4.3</td>
<td>The Stern-Volmer plot for the fluorescence quenching of 0.001 M Benzene solution in cyclohexane by BTCM at $\lambda_{ex}=240$nm, $T=303.15$ K</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>The Stern-Volmer plot for the fluorescence quenching of 0.001 M Benzene solution in cyclohexane by TBE at $\lambda_{ex}=240$nm, $T=303.15$ K</td>
<td>77</td>
</tr>
<tr>
<td>4.5</td>
<td>The Stern-Volmer plot for the fluorescence quenching of 0.001 M Benzene solution in cyclohexane by TBM at $\lambda_{ex}=240$nm, $T = 303.15$ K</td>
<td>78</td>
</tr>
</tbody>
</table>
4.6 The fluorescence spectra of toluene solution in cyclohexane in the absence and presence of haloalkanes. 87

4.7 The Stern-Volmer plot for the fluorescence quenching of 0.00005 M toluene solution in cyclohexane by TCM at $\lambda_{ex} = 250$ nm, $T=303.15$ K 88

4.8 The Stern-Volmer plot for the fluorescence quenching of 0.00005 M toluene solution in cyclohexane by BTCM at $\lambda_{ex} = 250$ nm, $T=303.15$ K 89

4.9 The Stern-Volmer plot for the fluorescence quenching of 0.00005 M toluene solution in cyclohexane by TBE at $\lambda_{ex} = 250$ nm, $T=303.15$ K 90

4.10 The Stern-Volmer plot for the fluorescence quenching of 0.00005 M toluene solution in cyclohexane by TBM at $\lambda_{ex} = 250$ nm, $T=303.15$ K 91

4.11 The fluorescence spectra of o-xylene in cyclohexane in the absence and presence of haloalkanes. 101

4.12 The Stern-Volmer plot for the fluorescence quenching of 0.00005 M o-xylene solution in cyclohexane by TCM at $\lambda_{ex} = 245$ nm, $T=303.15$ K 102

4.13 The Stern-Volmer plot for the fluorescence quenching of 0.00005 M o-xylene solution in cyclohexane by BTCM at $\lambda_{ex} = 245$ nm, $T=303.15$ K 103

4.14 The Stern-Volmer plot for the fluorescence quenching of 0.00005 M o-xylene solution in cyclohexane by TBE at $\lambda_{ex} = 245$ nm, $T=303.15$ K 104
The Stern-Volmer plot for the fluorescence quenching of 0.00005 M o-xylene solution in cyclohexane by TBM at $\lambda_{ex} = 245$ nm, $T = 303.15$ K.

The fluorescence spectra of m-xylene solution in cyclohexane in the absence and presence of haloalkanes.

The Stern-Volmer plot for the fluorescence quenching of 0.00005 M m-xylene solution in cyclohexane by TCM at $\lambda_{ex} = 247$ nm, $T = 303.15$ K.

The Stern-Volmer plot for the fluorescence quenching of 0.00005 M m-xylene solution in cyclohexane by BTCM at $\lambda_{ex} = 247$ nm, $T = 303.15$ K.

The Stern-Volmer plot for the fluorescence quenching of 0.00005 M m-xylene solution in cyclohexane by TBE at $\lambda_{ex} = 247$ nm, $T = 303.15$ K.

The fluorescence spectra of p-xylene solution in cyclohexane in the absence and presence of haloalkanes.

The Stern-Volmer plot for the fluorescence quenching of 0.00005 M p-xylene solution in cyclohexane by TCM at $\lambda_{ex} = 250$ nm, $T = 303.15$ K.
4.23 The Stern-Volmer plot for the fluorescence quenching of 0.00005 M p-xylene in cyclohexane by BTCM at $\lambda_{ex} = 250$ nm, $T = 303.15$ K.

4.24 The Stern-Volmer plot for the fluorescence quenching of 0.00005 M p-xylene solution in cyclohexane by TBE at $\lambda_{ex} = 250$ nm, $T = 303.15$ K.

4.25 The Stern-Volmer plot for the fluorescence quenching of 0.00005 M p-xylene solution in cyclohexane by TBM at $\lambda_{ex} = 250$ nm, $T = 303.15$ K.

4.26 The fluorescence spectra of naphthalene in cyclohexane in the absence and presence of haloalkanes.

4.27 The Stern-Volmer plot for the fluorescence quenching of 0.00001 M naphthalene solution in cyclohexane by TCM at $\lambda_{ex} = 270$ nm, $T = 303.15$ K.

4.28 The Stern-Volmer plot for the fluorescence quenching of 0.00001 M naphthalene solution in cyclohexane by BTCM at $\lambda_{ex} = 270$ nm, $T = 303.15$ K.

4.29 The Stern-Volmer plot for the fluorescence quenching of 0.00001 M naphthalene solution in cyclohexane by TBE at $\lambda_{ex} = 270$ nm, $T = 303.15$ K.
4.30 The Stern-Volmer plot for the fluorescence quenching of 0.00001 M naphthalene solution in cyclohexane by TBM at $\lambda_{ex} = 270$ nm, $T = 303.15$ K.

4.31 The fluorescence spectra of anthracene solution in cyclohexane in the absence and presence of haloalkanes.

4.32 The Stern-Volmer plot for the fluorescence quenching of 0.00001 M anthracene solution in cyclohexane by TCM at $\lambda_{ex} = 366$ nm, $T = 303.15$ K.

4.33 The Stern-Volmer plot for the fluorescence quenching of 0.00001 M anthracene solution in cyclohexane by BTCM at $\lambda_{ex} = 366$ nm, $T = 303.15$ K.

4.34 The Stern-Volmer plot for the fluorescence quenching of 0.00001 M anthracene in cyclohexane solution by TBE at $\lambda_{ex} = 366$ nm, $T = 303.15$ K.

4.35 The Stern-Volmer plot for the fluorescence quenching of 0.00001 M anthracene solution in cyclohexane by TBM at $\lambda_{ex} = 366$ nm, $T = 303.15$ K.

4.36 The fluorescence spectra of α-naphthol solution in cyclohexane in the absence and presence of haloalkanes.
The Stern-Volmer plot for the fluorescence quenching of 0.00005 M α-naphthol solution in cyclohexane by TCM at $\lambda_{ex} = 275$ nm, $T = 303.15$ K. 160

The Stern-Volmer plot for the fluorescence quenching of 0.00005 M α-naphthol in cyclohexane solution by BTCM at $\lambda_{ex} = 275$ nm, $T = 303.15$ K. 161

The Stern-Volmer plot for the fluorescence quenching of 0.00005 M α-naphthol solution in cyclohexane by TBE at $\lambda_{ex} = 275$ nm, $T = 303.15$ K. 162

The Stern-Volmer plot for the fluorescence quenching of 0.00005 M α-naphthol solution in cyclohexane by TBM at $\lambda_{ex} = 275$ nm, $T = 303.15$ K. 163

The fluorescence spectra of β-naphthol solution in cyclohexane in the absence and presence of haloalkanes. 169

The Stern-Volmer plot for the fluorescence quenching of 0.00005 M β-naphthol solution in cyclohexane by TCM at $\lambda_{ex} = 285$ nm, $T = 303.15$ K. 170

The Stern-Volmer plot for the fluorescence quenching of 0.00005 M β-naphthol solution in cyclohexane by BTCM at $\lambda_{ex} = 285$ nm, $T = 303.15$ K. 171
The Stern-Volmer plot for the fluorescence quenching of 0.00005 M β-naphthol solution in cyclohexane by TBE at $\lambda_{ex} = 285$ nm, $T = 303.15$ K.

The Stern-Volmer plot for the fluorescence quenching of 0.00005 M β-naphthol solution in cyclohexane by TBM at $\lambda_{ex} = 285$ nm, $T = 303.15$ K.

The dependence of quenching rate constants of some aromatic hydrocarbons by TCM and BTCM on $(IP_D - E_A)$.