CHAPTER I

INTRODUCTION
CHAPTER ONE

INTRODUCTION

Although many earlier writers published scattered and spasmodic statements in the areas of cognitive abilities, it was not until Guilford's 1950 Presidential address to the American Psychological Association, that a systematic and influential analysis of the kinds of thinking processes conventionally regarded as intellect was carried out. Guilford showed that a narrow conceptualization of intellect was built into current intelligence testing and hence into thinking about the nature of intellectual functioning. He then pressed the claims of what he called 'divergent thinking', suggesting that the later kind of thinking needs to be given serious consideration, as cognitive abilities are not restricted to intelligence alone but extend to creative abilities as well. Subsequently, other writers, Getzels and Jackson (1959, 1962) in particular extended Guilford's arguments by showing that a similar narrowness permeates thinking not only about intelligence but also regarding the kinds of processes that constitute efficient and worthwhile structural basis for academic achievement.

In an attempt to unravel the complex determinants of academic achievement, the earlier work concentrated on intelligence as the major explanatory variable of scholastic attainment. Applied workers, both in the clinical and
educational setting often conceptualized the human intellect almost solely in terms of IQ. Such a view of intellect, of course, was simply or explicitly a general factor theory of intelligence similar to that of Spearman (1927). This conceptualization led to the belief that intelligence is the only predictor of school grades. The experimental and statistical evidence, however, failed to give an unequivocal support to this contention. The imperfect nature of correlations between intelligence and academic achievement, ranging between .1 to .91, as has been evidenced in 111 studies cited by Stephens (1960) and 835 studies referred to by Rao (1963), left much scope for explanations other than in terms of intelligence to account for academic success.

This approach of intelligence as the sole factor responsible for academic achievement also presents difficulties when a student does either better or poorer than one expects on the basis of his IQ. Such problem cases are typically dealt with by labelling the "offending" student as over-achiever or under-achiever and attributing the deviation from what would be expected on the basis of IQ to "motivational factors". Since these motivational factors are seldom identified, it appears that such an explanation is often picturesque substitute for a confession of ignorance (Cline, Richard and Needham, 1963).

The conventional concept of intelligence has also been criticized because it refers only to a narrow band of intellectual abilities. The success of this concept in predicting school
success may well be the result of having had the criterion built into it. Several approaches to the assessment and prediction of learning ability have been advocated to circumvent these limitations. One of the alternate approach is to conceive intellect as composed of several relatively independent, or separate capacities, or in other words as multiple factors.

In this approach, over-under-achievement is attributed to intellectual abilities not present in IQ tests. This explanation has some advantage over explanations in terms of motivational factors in that it is amenable to empirical testing with existing techniques.

The earliest investigation to apply this approach in a really systematic way was made by Thurston (1938), who conceived of intellect as composed of several 'Primary Factors'. More recently Guilford and his various associates (1950, 1951, 1956, 1958, 1959) have used a similar approach and extended and refined considerably the work of Thurston. Guilford's (1959) three dimensional 'Structure of Intellect' involves 120 separate dimensions which might be considered functionally or structurally. Accordingly, there are five basic operations: cognition, memory, convergent production, divergent production and evaluation, each involving five types of contents: figural, symbolic, semantic and behavioural, and finally, these results into six products namely, units, classes, relations, systems, transformation and implications. Guilford further believes that creativity chiefly involves the functioning of 'divergent process' including such
things as idea production, fluency, flexibility and originality. According to him, divergent processes require the branching out from the known for producing novel ideas and tests measuring divergent thinking impose minimal constraints that structure and shape ideas. On the other hand, convergent thinking tests (intelligence as conventionally conceptualized, actually involves 'convergent thinking') do command constraints as they require exclusively the finding out of a single best answer to a problem, an answer which is predetermined. Thus, the processes involved in the divergent thinking, according to Guilford, are not focussed in IQ Tests. Getzels and Jackson (1962) believe divergent process to be representing intellectual inventiveness and innovation, and convergent processes to be representing acquisitiveness and conformity. Similarly, Kneller (1965) speaks in the same vein while comparing the two. According to him, "creative thought is innovative, exploratory, venturesome and impatient of conventions. It is attracted by the unknown and the undertermined, risk and uncertainty stimulate it. Non-creative thought is cautious, methodical and conservative. It absorbs the new into already known and expands existing categories in preference to devising new ones."

Generally, both these abilities are believed to be referring to two distinct modes of thinking, convergent thinking being the one which is usually engaged in, involving the conventional, stereotyped, habitual ways of thinking. The divergent
thinking on the contrary, is the antithesis of the routine or imitative pattern of thinking and performing. Former is the ability which involves the 'generation of logical imperatives' while later involves the 'generation of logical alternatives'. In short, convergent thinking involves 'logical necessities' and divergent thinking involves 'logical possibilities'. A person for whom the first mode is primary tends towards the usual and expected, and a person for whom the second mode is primary tends towards the novel and speculative.

Thus, those explicating the nature of relationship between creativity and intelligence raise the question "whether there is a unified dimension of individual differences that warrants conceptualizing a general cognitive dimension of creativity that is like the concept of intelligence but exists apart from that later." In other words, creativity and intelligence define dimensions of individual differences that vary independently of each other or that are at the most minimally related (Wallach and Kogan, 1965). Burt (1962, 1964) believes that underlying the tests of both convergent and divergent thinking, there is a large general factor supplemented by smaller group factors which are distinct from each other but may occasionally overlap in the tests of a mixed type. Thus, opinion on the relationship creativity-intelligence includes two quite incompatible views, firstly, that 'divergent thinking tests' do not cluster separately from 'convergent measures' and secondly that they do.
The first view has been advocated by quite a few experts. Marsh (1964) pointed out IQ to be the single best criterion of creative potential. Burt (1962) himself had remarked that in all the creative activities general intelligence is an essential and indeed the most important ingredient. Schmadel, Merrifield and Bonsall (1965) too suggested that children of high IQ may be both gifted and creative. In support of the above view, Yamamoto (1965) concluded that we should regard creativity tests as complementary components in new and more inclusive measures of human intellectual behaviour and not as a measure independent and exclusive of the general factor of intelligence. Cropley (1968) also found that high scores on tests of divergent thinking will tend to be accompanied by high scores on tests of convergent thinking, even though the two kinds of thinking are not identical.

The validity of the aforesaid views is established when various analysis of the relationship between scores on specific tests designed to measure creativity and those designed to measure more conventional thinking fail to draw a large distinction between the two. Investigators like Springbelt et al. (1951), Ghiseline (1959), Palm (1959), Piers, Daniel and Quackenbush (1960), Torrance (1960), Holland (1961), Ketcham and Kheiralla (1962), Ripple and May (1962), Sultan (1962), MaxOlshin (1963), Richard et al. (1964), Steiz (1964), Wodtke (1964), Herr et al. (1965), Klausmeier &

Even though, the above studies subscribe to the view that intelligence and creativity are not exclusively independent of each other yet the extent of their relationship varies from study to study. Torrance (1966) alone refers to 178 such correlations which range from -.3 through zero to +.7. A very high positive relationship between the two is reported by McClay and Meier (1931), Phatak (1962), Cropley (1966), Ginsberg and Whitmore (1966), Forest & Smith (1971), Passi (1971), Sharma (1971), Dhaliwal (1971), Mehdì (1973), Jarial (1979) and Jarial and Sharma (1980). Hasan and Butcher (1966), who found a correlation of .726, stressed that they are hardly distinguishable.

Diverging from the above findings, Guilford (1950) had predicted a low correlations between the two measures. In a generative investigation of this question, Getzels and Jackson (1962) reported positive but low correlations (.132 to .378)
between creativity and intelligence, a finding which has been replicated by many e.g. Welsh (1946), Taylor and Holland (1962), Torrance (1962), Cropley (1967), Madaus (1967b), Anastasi and Schaefer (1971), Guilford and Christensen (1973), Guilford (1975) and Badrinath and Satyanarayam (1979), all subscribe to the above view. In their review of related literature Taylor and Holland (1962) concluded that greater number of investigations report a positive but low correlations between the two constructs (.20 to .40) for general population. Allen, Dacey & Madaus (1969) studied their relationship at three levels of intelligence in three diverse populations and found the highest of the correlations to be .17.

Even, the higher degree of relationship as investigated by many has been attributed by Madaus (1967a,b) and Dacey, Madaus and Allen (1969) to the interaction between factors related to both the measures rather than to a true high correlation between the two constructs. Both Max Olshin (1963) and Simon and Ward (1973) also concluded that the nature of relationship between the two is influenced by the type of the tasks involved.

Similar views, to validate the supposition that creativity is a dimension of intellect independent of intelligence, have been put forward by Wallach & Kogan (1965). They provided evidence for postulating creativity as a general cognitive dimension apart from intelligence and remarked that the fault lies in the measurement approach taken in the studies where the
relationship between creativity and intelligence is of high degree. In their own words, "it may be that too diffuse a set of operations has been placed in the creativity category and that what is needed at this point is a new attempt at conceptual analysis on which to base measurement procedures" (p. 137). They conceptualized creativity in terms of ability to produce many unique cognitive associates. Using this as the criterion of creativity they were able to demonstrate that productivity and consequences measures were quite strongly correlated among themselves and that very low correlations existed between these two measures and intelligence, thus pointing to the existence of a general cognitive dimension of creativity that is different from intelligence.

The independence of creativity from conventional measures of intelligence was suggested as early as 1898 by Dearborn who found that those who were decidedly of the 'intellective type' gave a very poor account of themselves on imaginative thinking. In 1906 Colvin and Haver also revealed that logical power shows no pronounced relation to any type of imagination except the visual. Chassell (1916) while working with a number of different tests involving both types of thinking found that performance on the tasks bore relatively little relation to performance on creativity tests. McGuire et al. (1961), Yamamoto (1961, 1964), Thorndike (1963), Torrance (1963), Garwood (1964), Anderson (1965), Clark, Veldman and Thorpe (1965) & Feldhusen, Denney & Condon (1965) also support
the view that creativity may be viewed as a separate entity from intelligence but suggest that instead of a unidimensional trait it is a multidimensional phenomenon. May & Metcalf (1965) found the measures of ideational output to cohere strongly among themselves and to be independent of intelligence for a sample of eighth graders. Ward (1966) too found essentially the same picture on seven to eight year children as emerged from the Wallach & Kogan research.

More recently Carlier (1970), Khire (1971), Popescu and Fácóáru (1972), Halpin, Halpin and Tillman (1973), Crawford (1974), Brandt (1975), Lindemann and Fullagar (1975), Wieman (1975) and Jariel (1979) reported a creativity-intelligence dichotomy, consistent with the above findings.

Using factor analysis as the statistical technique Sultan (1962), Yamamoto (1964), Anderson (1965), Cropley (1966), Dacey, Maduas & Allen (1969), Dacey & Madaus (1971) and Kazelakis et al. (1972) also report the emergence of an independent factor of creativity.

Thus, considering creativity as a distinct mode of intellectual functioning as elicited by divergent thinking tests and general intelligence as another intellectual mode as elicited by convergent thinking tests, it may be argued that since creativity and intelligence represent distinguishable modes of intellectual functioning, both of them yield significant relationship with academic achievement. This may further facilitate the conceptualization of cognitive model of academic
achievement in favour of multi-dimensional cognitive model rather than a single intelligence score, traditionally taken as a cognitive factor accounting for individual variations in achievement.

An early and heuristically important study in this field was made by Getzels and Jackson (1962) who demonstrated that a group of individuals whose measured creativity was in the top twenty per cent and whose measured intelligence was in the lower eighty per cent was equivalent in achievement to the group whose intelligence was in the top twenty per cent but whose measured creativity was in the lower eighty per cent. They emphasized that the selection of talented individuals purely on the basis of IQ overlook a substantial group of people (approximately top 20 per cent of the over-achievers), who obtained high scores on creativity and achievement tests but not on intelligence tests. However, this study has been subjected to a great deal of criticism, mainly on the methodological grounds. Nonetheless, more or less similar findings have been reported by others too. Torrance (1962) found that six out of eight replications confirmed Getzels and Jackson's findings. As one possible explanation for the discrepant findings, he postulated a more complex form of relationship between the two variables, based on Anderson's (1960) theory. Applying the 'ability gradient theory', IQ could be expected to have effect on academic achievement up to a certain threshold.
level, beyond which further increase in IQ would have no effect but where creativity would begin to have an effect on academic achievement. Such results as lower creativity-achievement relationship obtained from a 'normal IQ' group (Ahrens, 1962) than from studies with 'high IQ' group (Mosteller, 1963) lend further support to Anderson's model. Few among others confirming the threshold hypothesis are Meer and Stein (1955), Barron (1961), Yamamoto (1961, 1964b), Taylor and Holland (1962), Torrance (1962), Taylor (1964), Vernon (1964), Dacey and Madaus (1971), Isreal (1971) & Passi (1971). The threshold point of ninety-fifth percentile and above has been reported by Meer & Stein (1955), and an IQ of 120 by Barron (1961), Yamamoto (1961), Torrance (1962), and Isreal (1971). On the contrary studies conducted by Cicirelli (1965), Bowers (1969), Smith (1971), Feiery (1976) and Patel and Joshi (1978) extend weak support to the existence of IQ threshold, as the regression of achievement decreased rather than increased with high IQ groups.

Majority of studies carried out with a view of answering the question whether creativity is a potent factor in academic achievement are:

1. Explanatory in nature as they simply correlated the two measures which reveal only bivariate relations (e.g. Taylor, 1958; Falw, 1979; Brown, 1960; Torrance, 1960; Getzels and Jackson, 1962; Phatak, 1962; Taylor and Holland, 1962; Flescher, 1963; Cline et al., 1963;

(2) Involve summative scores in one or both the variables (e.g. Falm, 1959; Torrance 1960; Flescher, 1963; Yamamoto, 1964, a, b, c; Bentley, 1966; and Hasan and Butcher, 1966),

(3) Finally, do not apply statistically adequate methods for controlling the influence of intelligence (e.g. Getzels and Jackson, 1962; Yamamoto, 1964; Rambo, 1964; Altenhaus, 1964; Cicirelli, 1965; Edward and Taylor, 1965; Cropley, 1967b; and Iwata, 1968).

As regards to adequacy of the research design employed in the studies subsumed in the first category, it needs to be stressed that intelligence remained a confounding variable to make the relationship spurious. Therefore, the influence of creativity on achievement (independent of intelligence) remains doubtful. Obviously, the scope of such studies remains very much limited from the view of the contribution to the existing knowledge regarding creativity as an independent factor of academic achievement.

So far as the studies in the second category are concerned, it is doubtful whether measures pertaining to imperfectly correlated measures are additive. If, on totalling the measures of imperfectly correlated variables, a composite score comes to represent 'heterogeneous mixture' then the
tradition of using total scores becomes misleading and consequently the results from studies in the second category become questionable. Thorndike (1963) points out that the separate tests being used to measure creativity show only a slight relationship with one another. Thus, he stresses that some tests may be related to achievement and others not. Obviously, if Thorndike's observation is valid, the composite scores based on thinly related measures is bound to yield spurious relationship with achievement.

In this connection, observation made by Wallach and Wing (1969, p. 6) are instructive. Talking about the repercussions coming through slight inter-correlations among measures of different components of creativity, they state that:

"the average of 21 correlations among the seven creativity indices themselves is 0.11. the clearest basic point is that the creativity measures as a battery possess very scanty correlations indeed.... under these circumstances we must once again question the practice of summing the individual's standard scores on the various measures of creativity to yield an overall creativity index."

The studies in the third category tried to refer to intelligence somehow or other in their research designs. Accepting that intelligence is an established single most potent factor of academic achievement, it becomes experimentally speaking imperative to make reference to intelligence in further studies which aspire to determine factors of achievement other than intelligence. When struck against this criterion, intention of
making reference to intelligence in all the studies put in this category seems to be valid. But the crux of the problem lies in seeing the point that almost all the studies here, applied insufficient techniques in making reference to intelligence in their research designs and failed to realize the real purpose of making such a reference.

Now, the question arises as to what may be the real purpose of making reference to intelligence in the studies under discussion. Keeping the fundamental principle of research methodology in view, when it is accepted that intelligence is an important source of individual differences in achievement variance, then it is desiderate to neutralize or hold constant its influence from achievement variables before verifying whether some factor/factors other than intelligence are responsible for differences in achievement. But, the studies mentioned in the last category either failed to neutralize the effect of intelligence from achievement or did not hold it constant. So, the results reached at by these studies cannot be very reliable.

In the view of the research findings related to creativity and achievement, and their critical analysis as cited above, it may be referred that:

(a) The problem of creativity-achievement relationship remains unsolved in the light of conflicting views expressed by the researchers. So, there arises the need of conducting more studies by introducing the control or manipulation
Methodology-wise and design-wise most of the studies submitted in the preceding paragraphs, have been found to be not very sound, and suffered from many anomalies. Accordingly, results derived from them are in dire need of conducting further research with sound design and methodology before some generalizations are made in this direction.

The studies conducted in Indian situations are very few in number (Phatak, 1962; Joshi and Choudhary, 1966; Raina 1966; Passi, 1971; Dhaliwal, 1976; Kumar and Raina, 1976; Mehdi, 1977; Gakhar and Wahi, 1978; Sundhu, 1979, Badrinath and Satyanareyam, 1979 and Gakhar & Behal, 1980). These too, either did not have creativity and achievement as the sole purpose of their study and referred to these variables as a side part of their research or confined themselves in finding out correlations between creativity and residual achievement. When judged from methodology point of view, many of them suffered from the anomalies enumerated above.

The developmental trends in the relationship of creativity & intelligence with achievement have not been studied by researchers so far. Since, the shift from one age group to another is marked with changes in the
intellectual functioning (Anastasi, 1930; Thorndike, 1930 & Piaget, 1965), and also in the creative abilities (Vernon, 1946; Barker, 1960; Torrance et al., 1960a; Bedner and Parker, 1965; Gakhar, 1974 & Cropley, 1978), there may also be a change in the relationship of these abilities with achievement at different age levels.

As a developmentalist, interested in the organism's adaptation to environment through intelligence, Piaget, in the course of nearly 50 years of concentrated mental development research has evolved a theory of intelligence. He applies symbolic logic to introduce means and ways for describing and analyzing what in a highly connected way a child does at different stages of his development. Further, he gives demonstration of network of related behaviors which can be regarded as elementary structures of intelligence. The structures are fundamental instruments of the sequence of age-related stages which Piaget established from early sensory-motor coordinations of infants to the abstract intelligence of adults. The stages collectively are known as the "operatoire" under normal circumstances and imply that these are identifiable sequential phases which are generally characteristic of most members of a broadly defined age range. The invariable sequence of intellectual developmental stages as given by Piaget runs as sensori-motor, pre-operational, concrete-operational and formal operational
stages which begin approximately at birth, about two years, eight years and twelve years of age respectively. The child progresses from one stage of the "operational" to the next naturally. This important factor of continuity of intellectual growth, along with the dependence of each stage upon the successful implementation of earlier ones, are few of the dominating features of Piaget's theory, which provide the thread of continuity and lawfulness of development that permits explanations and prediction of cognitive behaviour.

During the stage of 'concrete operations' mobile and systematic thought organizes and classifies information. Thought is no longer centred on a particular state of an object, rather, it can follow successive changes through various detours and reversals. The construction of operational structures at concrete stage gives the child the means to know the world within systems of logical classifications, seriations, numbers, spatial and temporal co-ordinates and causality. Since these operations are tied to action they are concrete rather than abstract. Intellectual abilities in terms of Piagetian concrete operational logic involve the process of 'successive changes' which also characterizes the figural tasks of creativity through manifestations in making figural objects out of identical or similar stimuli (Smith, 1977)

The formal operational stage on the other hand, is substantially more complex in nature. It is characterized
by the development of formal, abstract thought when the individual is able to internally manipulate abstract thought content without the aid of concrete and perceivable world. He becomes capable of reasoning not only on the basis of object but also on the basis of hypothesis and can perform 'operations on operations' in a systematic manner. The formulation of hypothesis and deducing consequences from them leads to a 'hypothetic-deductive' level of thought which expresses itself in linguistic formulations and logical constructions, the examples of which are combinational logic and proportionality. Thus, due to the differences in operations from concrete to formal operational stage there is possibility that the relationship of verbal and figural creativity with achievement in various school teaching subjects at concrete stage may not be identical to their relationship with achievement at formal operational stage.

Further, on the basis of differentiation or specialization of abilities with increasing age as has been evidenced by Anastasi (1930) and Thorndike (1930) it is presumed that intellectual abilities also assume specification with the advancement of age. As a result of this specialization, the nature and degree of relationship between intelligence and achievement, as also between creativity and achievement may be different for different academic subjects at formal operational stage, whereas, it may not be so differential at concrete operational stage when generalization of these abilities is
advocated.

On the basis of the arguments presented above the present study "Differential Predictive Efficiency of Creativity and Intelligence for Academic Achievement at two Piagetian Stages of Concrete Thinking and Formal Thinking", was directed towards the following objectives:

(1) To examine the nature and extent of relationship of predictor-variables of creativity and intelligence with the criterion variable of academic achievement in various school subjects namely, social-studies, general science and first language.

(2) To study the bivariate relationship between the variables of creativity and achievement independent of intelligence as also between intelligence and achievement free from creativity.

(3) To identify the factor structure underlying the variables of creativity, intelligence and academic achievement in different areas.

(4) To examine the differential predictive efficiency of creativity and intelligence for achievement in different school teaching subjects.

(5) To find out the individual and conjoint predictability of creativity and intelligence towards the criterion of academic achievement as also to locate the best
combination of predictor variables explaining maximum criterion variance.

(6) To study the interactional effect of creativity and intelligence in explaining individual differences in academic achievement in social-studies, general science and first language.

(7) To assess and compare the objectives outlined above from S.No. 1 to 6, at concrete and formal operational stages.

Thus, the study is comparatively intensive and exhaustive in the sense that in addition to simply relating the variables of creativity and intelligence to academic achievement in various teaching subjects, the relationships have also been studied by partialling away the effect of one predictor variable from the criterion variable of academic achievement before relating it to the other predictor variable, which facilitated in deriving the true picture of relationships between the variables under consideration. Further, it does not only confine itself to examining the nature of relationships alone but extends its scope to the identification of factor structure underlying the criterion and predictor variables; to the finding out of the predictive efficiency of creativity & intelligence both individually and conjointly; and to the study of the interactional effect of both creativity x intelligence on academic achievement. In addition, these results have been
studied separately for different achievement subjects that is, social studies, general science and first language, and across two age levels representing Piagetian concrete and formal operations. The variables of verbal and non-verbal intelligence have been kept separate throughout the analysis of data. In view of the observations made by Thorndike (1963) and Wallach and Wing (1969) the components of creativity that is, fluency, flexibility originality and elaboration (elaboration was scored only for the figural tests) have too been kept separate. Total verbal and total figural creativity scores (along with separate dimension-wise scores) were retained only in the interest of comparability of the findings of the present investigation with those derived from previous studies.

DELIMITATIONS OF THE STUDY

(1) In favour of the consideration of wider applicability, the study is limited to academic achievement of the whole sample and does not deal with over-achievers and under-achievers.

(2) In order to make the study intensive, only two major cognitive variables that is, creativity and intelligence have been studied as predictors. Creativity has been assumed as belonging to the cognitive domain.

Although important, but the non-cognitive variables don't fall in the scope of the present study.
(3) The sample at concrete and formal operational stages was selected on the basis of mean age as viewed by Piaget, that is 10+ (10 to 11) and 14+ (14 to 15) for concrete and formal stages respectively. It was assumed that the subjects falling in this age range have reached their respective stages. The assessment as to they have really reached these stages has not been made through the Piaget tasks. Also, the age range in between i.e. 7 to 10 and 11 to 14 have not been taken into consideration.

(4) The academic achievement in only three of the five core subjects that is, social-studies, general science and first language have been taken into account. The other two core subjects i.e. mathematics and English have been deleted because mathematics at concrete operational stage is taught as arithmetic alone and at formal stage it is studied as arithmetic plus algebra-geometry or household; whereas language of English is just started at the concrete stage in government schools.

ORGANIZATION OF CHAPTERS OF THE REPORT

The introductory chapter of the report presents a rationale and need for taking up the present study. Various theoretical views regarding creativity, intelligence and academic achievement along with the review of related literature have been discussed in the second chapter. While the next
chapter (Chapter III) deals with the methodology and procedure adopted for the completion of this work, chapter IV reveals the description of data and linearity of correlations between the predictor and criterion variables. Attempts to identify the intellective and creative factors of academic achievement both at concrete and formal operational stages for different school subjects with the help of various statistical techniques have been given in the proceeding five chapters (chapters V to IX), wherein attempts have been made to present analysis of data and discussion of results simultaneously so as to furnish answers for different types of enquiries in separate chapters. The last chapter (chapter X) contains summary and conclusions of the present study giving the overall view of the whole research report along with the educational implications of the present study. Bibliography & appendices have been attached at the end of the research report.