<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>Amount of Pb(II) adsorbed at different pH, metal ion concentration 300mg/l, temperature 298K on particle size 212 micron for different times of contact</td>
<td>325</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Amount of Pb adsorbed on rice husk for different times of contact at pH 5, concentration ranging from 30-300mg/l, temperature 298 K on 212 micron particle size</td>
<td>326</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Amount of Pb adsorbed on thiolated rice husk for different times of contact at pH 5, concentration ranging from 30-300mg/l, temperature 298 K on 212 micron particle size</td>
<td>326</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Amount of Pb adsorbed on esterified rice husk for different times of contact at pH 5, concentration ranging from 30-300mg/l, temperature 298 K on 212 micron particle size</td>
<td>327</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Amount of Pb adsorbed on saw dust for different times of contact at pH 5, concentration ranging from 30-300mg/l, temperature 298 K on 212 micron particle size</td>
<td>327</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Amount of Pb adsorbed on thiolated saw dust for different times of contact at pH 5, concentration ranging from 30-300mg/l, temperature 298 K on 212 micron particle size</td>
<td>328</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Amount of Pb adsorbed on esterified saw dust for different times of contact at pH 5, concentration ranging from 30-300mg/l, temperature 298 K on 212 micron particle size</td>
<td>328</td>
</tr>
<tr>
<td>3.2.8</td>
<td>Amount of Pb(II) adsorbed on different adsorbents for different particle size at varying times of contact, metal ion concentration 300mg/l, pH 5 at 298K</td>
<td>329</td>
</tr>
<tr>
<td>3.2.9</td>
<td>Isotherm constants along with regression coefficient (R^2) for adsorption of Pb(II) on different adsorbents at pH 5, particle size 212 micron mesh, metal ion concentration 300mg/l, contact time 3h and temperature 298K</td>
<td>330</td>
</tr>
<tr>
<td>3.2.10</td>
<td>Kinetic parameters for adsorption of Pb(II) on different adsorbents at pH 5, particle size 212 micron, metal ion concentration 300mg/l and temperature 298K</td>
<td>331</td>
</tr>
<tr>
<td>3.2.11</td>
<td>Intraparticle diffusion constants for adsorption of Pb(II) on different adsorbents for different particle size at pH 5, metal ion concentration 300mg/l and temperature 298K</td>
<td>331</td>
</tr>
<tr>
<td>3.2.12</td>
<td>Intraparticle diffusion constants for adsorption of Pb(II) on different adsorbents at different metal ion concentration, pH 5, temperature 298K on particle size 212 micron</td>
<td>332</td>
</tr>
</tbody>
</table>
3.2.13 Amount of Pb(II) adsorbed at different temperature on rice husk, thiolated rice husk, esterified rice husk at pH 5, metal ion concentration 300mg/l particle size 212 micron for different times of contact

3.2.14 Amount of Pb(II) adsorbed at different temperature on saw dust, thiolated saw dust, esterified saw dust at pH 5, concentration 300mg/l particle size 212 micron for different times of contact

3.2.15 Thermodynamic parameters of adsorption of Pb(II) for different adsorbents at pH 5, concentration 300mg/l, time of contact 3h, particle size 212 micron

3.2.16 Amount adsorbed and percentage removal of Pb(II) from (Pb + Ni) binary mixture for various Ni(II) ion concentrations on different adsorbents at 298K, time of contact 3h, pH 5, 212 micron particle size

3.2.17 Kinetic model parameters of different column for adsorption of Pb(II) on different adsorbents at flow rate 1.2 l/h, influent concentration 200 mg/l, pH 5 and particle size 212 micron mesh

3.3.1 Amount of Zn(II) adsorbed at different pH, metal ion concentration 300mg/l, temperature 298K on particle size 212 micron for different times of contact

3.3.2 Amount of Zn adsorbed on rice husk for different times of contact at pH 8, concentration ranging from 30-300mg/l, temperature 298 K on 212 micron particle size

3.3.3 Amount of Zn adsorbed on thiolated rice husk for different times of contact at pH 8, concentration ranging from 30-300mg/l, temperature 298 K on 212 micron particle size

3.3.4 Amount of Zn adsorbed on esterified rice husk for different times of contact at pH 8, concentration ranging from 30-300mg/l, temperature 298 K on 212 micron particle size

3.3.5 Amount of Zn adsorbed on saw dust for different times of contact at pH 8, concentration ranging from 30-300mg/l, temperature 298 K on 212 micron particle size

3.3.6 Amount of Zn adsorbed on thiolated saw dust for different times of contact at pH 8, concentration ranging from 30-300mg/l, temperature 298 K on 212 micron particle size

3.3.7 Amount of Zn adsorbed on esterified saw dust for different times of contact at pH 8, concentration ranging from 30-300mg/l, temperature 298 K on 212 micron particle size

3.3.8 Amount of Zn(II) adsorbed on different adsorbents for different particle size at varying times of contact, metal ion concentration 300mg/l, pH 8 at 298K

xxviii
3.3.9 Isotherm constants along with regression coefficient (R^2) for adsorption of Zn(II) on different adsorbents at pH 8, particle size 212 micron, metal ion concentration 300mg/l, contact time 3h and temperature 298K

3.3.10 Kinetic parameters for adsorption of Zn(II) on different adsorbents at pH 8, particle size 212 micron, metal ion concentration 300mg/l and temperature 298K

3.3.11 Intraparticle diffusion constants for adsorption of Zn(II) on different adsorbents for different particle size at pH 8, concentration 300mg/l and temperature 298K

3.3.12 Intraparticle diffusion constants for adsorption of Zn(II) on different adsorbents for different metal ion concentration at pH 8, particle size 212 micron and temperature 298K

3.3.13 Amount of Zn(II) adsorbed at different temperature on rice husk, thiolated rice husk, esterified rice husk at pH 8, metal ion concentration 300mg/l particle size 212 micron for different times of contact

3.3.14 Amount of Zn(II) adsorbed at different temperature on saw dust, thiolated saw dust, esterified saw dust at pH 8, concentration 300mg/l particle size 212 micron for different times of contact

3.3.15 Thermodynamic parameters of adsorption of Zn(II) for different adsorbents at pH 8, concentration 300mg/l, time of contact 3h, particle size 212 micron

3.3.16 Amount adsorbed and percentage of Zn(II) from (Zn + Cu) binary mixture for various Cu(II) concentration on different adsorbents at 298K, contact time 3h on particle size 212 micron

3.3.17 Kinetic model parameters of different column for adsorption of Zn(II) on different adsorbents at flow rate 1.2 l/h, influent concentration 200 mg/l, particle size 212 micron mesh and pH 8

3.4.1 Amount of Mn(II) adsorbed at different pH, metal ion concentration 300mg/l, temperature 298K on particle size 212 micron for different times of contact

3.4.2 Amount of Mn adsorbed on rice husk for different times of contact at pH 5, concentration ranging from 30-300mg/l, temperature 298K on 212 micron particle size

3.4.3 Amount of Mn adsorbed on thiolated rice husk for different times of contact at pH 5, concentration ranging from 30-300mg/l, temperature 298K on 212 micron particle size

3.4.4 Amount of Mn adsorbed on esterified rice husk for different times of contact at pH 5, concentration ranging from 30-300mg/l, temperature 298K on 212 micron particle size

xxix
3.4.5 Amount of Mn adsorbed on saw dust for different times of contact at pH 5, concentration ranging from 30-300mg/l, temperature 298 K on 212 micron particle size

3.4.6 Amount of Mn adsorbed on thiolated saw dust for different times of contact at pH 5, concentration ranging from 30-300mg/l, temperature 298 K on 212 micron particle size

3.4.7 Amount of Mn adsorbed on esterified saw dust for different times of contact at pH 5, concentration ranging from 30-300mg/l, temperature 298 K on 212 micron particle size

3.4.8 Amount of Mn(II) adsorbed on different adsorbents for different particle size at varying times of contact, metal ion concentration 300mg/l, pH 5 at 298K

3.4.9 Isotherm constants along with regression coefficients (R^2) for adsorption of Mn(II) on different adsorbents at pH 5, particle size 212 micron, metal ion concentration 300mg/l, contact time 3h and temperature 298K

3.4.10 Kinetic parameters for adsorption of Mn(II) on different adsorbents at pH 5, particle size 212 micron, metal ion concentration 300mg/l and temperature 298K

3.4.11 Intraparticle diffusion constants for adsorption of Mn(II) on different adsorbents for different particle size at pH 5, metal ion concentration 300mg/l and temperature 298K

3.4.12 Intraparticle diffusion constants for adsorption of Mn(II) on different adsorbents for different metal ion concentration at pH 5, temperature 298K on particle size 212 micron.

3.4.13 Amount of Mn(II) adsorbed at different temperature on rice husk, thiolated rice husk, esterified rice husk at pH 5, metal ion concentration 300mg/l particle size 212 micron for different times of contact

3.4.14 Amount of Mn(II) adsorbed at different temperature on saw dust, thiolated saw dust, esterified saw dust at pH 5, concentration 300mg/l particle size 212 micron for different times of contact

3.4.15 Thermodynamic parameters of adsorption of Mn(II) for different adsorbents at pH 5, concentration 300mg/l, time of contact 3h, particle size 212 micron

3.4.16 Amount adsorbed and percentage removal of Mn(II) from (Mn + Fe) binary mixture for various Fe(II) ion concentrations on different adsorbents at 298K, time of contact 3h, pH 5, 212 micron particle size

3.4.17 Kinetic model parameters of different column for adsorption of Mn(II) on different adsorbents at flow rate 1.2 l/h, influent concentration 200 mg/l, particle size 212 micron mesh and pH 5