<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
<td>constants in Eq. (4.18)</td>
<td>[-]</td>
</tr>
<tr>
<td>a, b, c, d</td>
<td>constants in Eq. (4.8)</td>
<td>[-]</td>
</tr>
<tr>
<td>$A'-D', F'$</td>
<td>constants in Eq. (4.2.4)</td>
<td>[-]</td>
</tr>
<tr>
<td>A_1</td>
<td>constant in Eq. (4.2.7)</td>
<td>[-]</td>
</tr>
<tr>
<td>A_2</td>
<td>constant in Eq. (4.2.9)</td>
<td>[-]</td>
</tr>
<tr>
<td>A_3</td>
<td>constant in Eq. (4.2.14)</td>
<td>[-]</td>
</tr>
<tr>
<td>a_{LG}</td>
<td>specific liquid-gas interfacial area per unit volume reactor</td>
<td>[m$^{-1}$]</td>
</tr>
<tr>
<td>a_{LS}</td>
<td>specific liquid-solid interfacial area per unit volume reactor</td>
<td>[m$^{-1}$]</td>
</tr>
<tr>
<td>a_s</td>
<td>specific surface area of packing, $\frac{6(1 - e)}{d_p} + \frac{4}{D_e}$</td>
<td>[m$^{-1}$]</td>
</tr>
<tr>
<td>A_w</td>
<td>wave amplitude</td>
<td>[m]</td>
</tr>
<tr>
<td>B_2</td>
<td>constant in Eq. (4.2.10)</td>
<td>[-]</td>
</tr>
<tr>
<td>B_3</td>
<td>constant in Eq. (4.2.14)</td>
<td>[-]</td>
</tr>
<tr>
<td>d</td>
<td>throat diameter, d_p</td>
<td>[m]</td>
</tr>
<tr>
<td>d^*</td>
<td>diameter of pore chamber, d_p</td>
<td>[m]</td>
</tr>
<tr>
<td>D_e</td>
<td>equivalent diameter</td>
<td>[m]</td>
</tr>
<tr>
<td>d_h</td>
<td>equivalent diameter of the interstitial channels</td>
<td>[m]</td>
</tr>
<tr>
<td>d_h^*</td>
<td>hydraulic diameter, $\frac{16e^3}{9\pi(1 - e)^2} d_p$</td>
<td>[m]</td>
</tr>
<tr>
<td>d_p</td>
<td>effective particle diameter = equivalent spherical particle</td>
<td>[m]</td>
</tr>
</tbody>
</table>
NOMENCLATURE

d

diameter * sphericity of the particle

d_{eq} equivalent spherical diameter

\(d_{min} \) minimum throat diameter in the column,

\[d_{min} = \left(\frac{2}{\pi} \frac{\sin \frac{\pi}{3} - \frac{1}{2}}{d_p} \right)^{0.5} \] [m]

\(E_1, E_2 \) constant of the Ergun equation for single phase flow on the packing of interest

\(E_L \) power dissipation by the liquid phase per unit volume of the bed,

\[E_L = \frac{L}{\rho_L Z} \left[\frac{\Delta P}{Z} \right]_{LG} \] [m]

\(E_L'' \) energy dissipation per unit mass of liquid,

\[(V_L / \rho_L) \left(\frac{\Delta P}{Z} \right) \] [m^2 s^{-3}]

\(F^* \) factor defined by Sai and Varma 1987

\(f_G \) friction factor for gas flow over a solid

\(f_L \) friction factor for liquid flow over a solid

\(f_{LG} \) two-phase friction factor,

\[f_{LG} = \left(\frac{\Delta P}{Z} \right)_{LG} \frac{d_p \rho_G}{2G^2} \] [-]

\(f_{LGL} \) two-phase friction factor, Eq.(4.2.1)

\(f_m \) modified friction factor for gas-phase, Eq. (3.19)

\(F_M \) factor defined by Sai and Varma 1987

\(Fr \) Froude number,

\[F_r = \frac{V_a^2}{gd_p} \] [-]

\(Fr' \) Froude number at pulsing flow transition,

\(f_s \) shear slip factor

\(f_v \) velocity slip factor

xxiii
NOMENCLATURE

\(F_a \)
Total drag force experienced by \(\alpha \)-phase per unit bed volume
[Pa m\(^3\)]

\(g \)
Acceleration due to gravity
[mms\(^2\)]

\(G \)
Gas superficial mass velocity
[kgm\(^{-2}\)s\(^{-1}\)]

\(Ga \)
Galileo number of the liquid phase, \(\frac{d_p \rho_L^2 g}{\mu_L^2} \)
[-]

\(Ga^* \)
Modified Galileo number, \(\frac{d_p \rho_L^2 g}{\mu_L^2} \left(\rho_L g + \frac{\Delta P}{Z} \right) \)
[-]

\(Ga^{**} \)
Modified Galileo number, \(\frac{d_p \rho_L^2 g}{\mu_L^2} \left[1 - \left(\frac{1}{\rho_L g \beta_L} \right) \frac{\Delta P}{Z} \right] \)
[-]

\(Ga_L' \)
Modified Galileo number of the liquid phase, \(\frac{d_p \rho_L^2 g}{\mu_L^2 \left(g \rho_L^2 \right)} \)
[-]

\(Ga_a \)
Galileo number of the \(\alpha \) phase, \(\frac{d_p \rho_a^2 g}{\mu_a^2} \)
[-]

\(Ga_a^{''} \)
Modified Galileo number of the \(\alpha \) phase, \(\frac{d_p \rho_a^2 g}{\mu_a^2 \left(1 - \varepsilon \right)^3} \)
[-]

\(H \)
Hidden layer vector
[-]

\(H_c \)
\(\frac{K \left(\frac{3}{n} \right)^n \left(\varepsilon^2 \right)^{1-n}}{12 \left(\frac{n}{1 - \varepsilon} \right)^n} \)
[Pa s\(^n\)]

\(H_D \)
Dynamic liquid holdup
[-]

\(H_S \)
Static liquid holdup
[-]

\(H_T \)
Total liquid holdup, volume of liquid per unit volume of the reactor
[-]

\(J \)
Number of modes in hidden layer
[-]

\(K \)
Flow consistency index
[Pa s\(^n\)]

xxiv
\(K'' \)
voidage correction factor

\(K_1 \)
model parameter, Eq. (4.14)

\(K_1' \)
coefficient defined by Specchia and Baldi, 1977

\(K_2' \)
coefficient defined by Specchia and Baldi, 1977

\(Ka \)
Kapitza number, \(\frac{\sigma_{L, q}^3}{\rho_L g v_L^4} \)

\(k_i \)
Blake-Kozney constant, Eq. (4.16)

\(l \)
characteristic length of the non-spherical particle or diameter of the spherical particle

\(L \)
liquid superficial mass velocity, \([\text{kg} \cdot \text{m}^{-2} \cdot \text{s}^{-1}]\)

\(L_t \)
liquid superficial mass velocity at transition, \([\text{kg} \cdot \text{m}^{-2} \cdot \text{s}^{-1}]\)

\(L_{t, neural} \)
\(L_t \) predicted by neural network correlation (Larachi et al., 1999), \([\text{kg} \cdot \text{m}^{-2} \cdot \text{s}^{-1}]\)

\(m \)
model parameter, Eq. (4.14)

\(m^* \)
minimum flow rate per unit length for complete wetting

\(MRQE \)
mean relative quadratic error, Eq. (4.1)

\(n \)
flow behavior index, Eq. (4.11)

\(n^* \)
factor defined by Sai and Varma, 1987

\(N_i \)
\(K_i v_i^m \), Eq. (4.14)

\(N_c \)
number of channels over the entire cross section

\(N_0 \)
number of circles irrespective of size per unit sectional area, \(6(1-c)\pi d_p^2 \)

\(P_1-P_3 \)
constants in Eq. (4.3.3)

\(P_6 \)
constants in Eq. (4.3.5)

\(P_7 \)
constants in Eq. (4.3.6)

\(Q_i \)
constants in Eq. (4.3.7)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>correlation coefficient</td>
<td>[-]</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number, Ld_p/μ_l</td>
<td>[-]</td>
</tr>
<tr>
<td>$Re_{L,cr}$</td>
<td>Reynolds number at flow regime transition</td>
<td>[-]</td>
</tr>
<tr>
<td>Re_{LG}</td>
<td>$\frac{d_p G}{\mu_\ell (1-\varepsilon) \alpha_w}$</td>
<td>[-]</td>
</tr>
<tr>
<td>Re_{LM}</td>
<td>$\frac{d_p L}{\mu_\ell (1-\varepsilon) \alpha_w}$</td>
<td>[-]</td>
</tr>
<tr>
<td>Re_m</td>
<td>modified Reynolds number, Eq. (3.18)</td>
<td>[-]</td>
</tr>
<tr>
<td>Re_M</td>
<td>modified Reynolds number, $\frac{d_p L \gamma^2 \rho_{l}}{K}$</td>
<td>[-]</td>
</tr>
<tr>
<td>Re_a</td>
<td>bed Reynolds number of the a phase, $V_a d_p/\gamma_d(1-\varepsilon)$</td>
<td>[-]</td>
</tr>
<tr>
<td>S</td>
<td>neural-network output</td>
<td>[-]</td>
</tr>
<tr>
<td>S^*</td>
<td>length of grain boundary per unit sectional area</td>
<td>[-]</td>
</tr>
<tr>
<td>S_1</td>
<td>$\frac{a_p d_p}{\varepsilon}$</td>
<td>[-]</td>
</tr>
<tr>
<td>S_2</td>
<td>$\left(\frac{1}{d_p} \right)^{\frac{1}{n}}$</td>
<td>[-]</td>
</tr>
<tr>
<td>T_1, T_3</td>
<td>constants in Eq.(4.3.8)</td>
<td>[-]</td>
</tr>
<tr>
<td>U</td>
<td>interstitial velocity</td>
<td>[ms$^{-1}$]</td>
</tr>
<tr>
<td>u_G</td>
<td>gas linear velocity, G/ρ_G</td>
<td>[ms$^{-1}$]</td>
</tr>
<tr>
<td>$u_{G,0}$</td>
<td>gas interstitial velocity, $\frac{\Gamma u_G}{\varepsilon}$</td>
<td>[ms$^{-1}$]</td>
</tr>
<tr>
<td>U_i</td>
<td>normalized input variable</td>
<td>[-]</td>
</tr>
<tr>
<td>u_L</td>
<td>liquid linear velocity, L/ρ_L</td>
<td>[ms$^{-1}$]</td>
</tr>
<tr>
<td>$u_{L,0}$</td>
<td>liquid interstitial velocity, $\frac{\Gamma u_L}{\varepsilon}$</td>
<td>[ms$^{-1}$]</td>
</tr>
</tbody>
</table>
NOMENCLATURE

\(V_a \)
superficial velocity of \(a \)-phase
\([\text{ms}^{-1}]\)

\(v_G \)
gas actual velocity
\([\text{ms}^{-1}]\)

\(V_{GT} \)
superficial gas velocity at flow regime transition
\([\text{ms}^{-1}]\)

\(v_L \)
liquid actual velocity
\([\text{ms}^{-1}]\)

\(V_{LT} \)
superficial liquid velocity at flow regime transition
\([\text{ms}^{-1}]\)

\(W_{EG} \)
gas-phase Weber number, \(\frac{G^2 d_p}{\rho_g \sigma_L} \)
[-]

\(W_{EL} \)
liquid-phase Weber number, \(\frac{L^2 d_p}{\rho_l \sigma_L} \)
[-]

\(W_G \)
power dissipated in the gas phase referred to the volume occupied by the two phases
\([\text{kgm}^{-1}\text{s}^{-3}]\)

\(W_i \)
Weissenberg number, Eq. (4.17)
[-]

\(W_T \)
total power dissipated in reactor referred to the volume occupied by the two phases
\([\text{kgm}^{-1}\text{s}^{-3}]\)

\(X \)
Lockhart-Martinelli parameter, \(\left(\frac{\Delta P_l}{\Delta P_G} \right)^{0.5} \)
[-]

\(X' \)
modified Lockhart-Martinelli parameter, \(\left(\frac{\sigma_L}{\sigma_G} \right)^{0.5} \)
[-]

\(X_G \)
\(\frac{1}{X_L} \)
[-]

\(X_L \)
same as \(X \)
[-]

\(Z \)
packed bed height
[\text{m}]

\(Z' \)
\(\frac{\text{Re}_G^{1.167}}{\text{Re}_L^{0.757}} \)
[-]

xxvii
GREEK SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>a'</td>
<td>$4\sqrt{1 - \beta' - (1 - \beta')}$</td>
<td>[-]</td>
</tr>
<tr>
<td>a_m</td>
<td>adaptive parameter, f/f_G</td>
<td>[-]</td>
</tr>
<tr>
<td>a_w</td>
<td>wall-effect correction factor, Eq. (3.20)</td>
<td>[-]</td>
</tr>
<tr>
<td>β</td>
<td>liquid saturation</td>
<td>[-]</td>
</tr>
<tr>
<td>β'</td>
<td>$\left[\frac{200}{Re_L} + 1.75\right] \frac{\nu^2_g}{gd_p} \frac{1 - \varepsilon}{\varepsilon^3}$</td>
<td>[-]</td>
</tr>
<tr>
<td>β_d</td>
<td>dynamic liquid saturation, volume of liquid that drains</td>
<td>[-]</td>
</tr>
<tr>
<td></td>
<td>from the packed bed per unit void volume of the reactor</td>
<td></td>
</tr>
<tr>
<td>β_s</td>
<td>static liquid saturation, volume of liquid that remains in the bed</td>
<td>[-]</td>
</tr>
<tr>
<td></td>
<td>after draining the liquid from the packed bed per unit void volume of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>reactor</td>
<td></td>
</tr>
<tr>
<td>β_t</td>
<td>total liquid saturation, volume of liquid per unit void</td>
<td>[-]</td>
</tr>
<tr>
<td></td>
<td>volume of the reactor</td>
<td></td>
</tr>
<tr>
<td>$\dot{\gamma}$</td>
<td>shear rate,</td>
<td>[s$^{-1}$]</td>
</tr>
<tr>
<td>$\dot{\gamma}_w$</td>
<td>shear rate at the wall, Eq. (4.16)</td>
<td>[s$^{-1}$]</td>
</tr>
<tr>
<td>Γ</td>
<td>tortuosity of the packed bed, $\frac{1}{\cos \theta_m}$</td>
<td>[-]</td>
</tr>
<tr>
<td>δ</td>
<td>equivalent diameter of the gas channel</td>
<td>[-]</td>
</tr>
<tr>
<td>$\overline{\delta}$</td>
<td>dimensionless parameter Eq. (5.8)</td>
<td>[-]</td>
</tr>
<tr>
<td>δ_{LG}</td>
<td>two-phase frictional pressure drop</td>
<td>[kg m$^{-2}$ s$^{-2}$]</td>
</tr>
<tr>
<td>δ'</td>
<td>mean height of liquid film</td>
<td>[m]</td>
</tr>
<tr>
<td>ΔP</td>
<td>two phase pressure drop</td>
<td>[Nm$^{-2}$]</td>
</tr>
<tr>
<td>ΔP_G</td>
<td>pressure drop based on gas phase</td>
<td>[Nm$^{-2}$]</td>
</tr>
<tr>
<td>ΔP_L</td>
<td>pressure drop based on liquid phase</td>
<td>[Nm$^{-2}$]</td>
</tr>
<tr>
<td>ε</td>
<td>bed void fraction</td>
<td>[-]</td>
</tr>
</tbody>
</table>
NOMENCLATURE

\(e_a \) Bed holdup of \(\alpha \)-phase

\(\zeta_L, \zeta_G \) Charpentier's correlating variables

\(\zeta_{LG} \) Charpentier's correlating variable

\(\eta \) parameter defined by Rao et al. (1983)

\(\theta_m \) average settlement angle of the particles

\(\lambda \) a parameter, Eq. (4.3)

\(\lambda_{eff} \) effective fluid characteristic time, \(\frac{N_l}{2\gamma_T} \), Eq. (4.15)

\(\lambda_4 \) time constant of material

\(\mu_a \) viscosity of \(\alpha \)-phase

\(\mu_a \) apparent viscosity of liquid-phase

\(\mu_a \) \(K\gamma^n \), Eq. (4.10)

\(\xi \) \(\left(\frac{\sigma_w}{\sigma_L} \right)^{1/3} \left(\frac{\mu_{\alpha}}{\mu_w} \right)^{0.5} \left(\frac{\rho_w}{\rho_L} \right)^{1/3} \)

\(\xi' \) \(\left(\frac{\sigma_w}{\sigma_L} \right)^{1/3} \left(\frac{\mu_{\alpha}}{\mu_w} \right)^{0.5} \left(\frac{\rho_w}{\rho_L} \right)^{1/3} \), Eq. (4.12)

\(\rho_a \) density of \(\alpha \)-phase

\(\tau \) shear stress, \(K\gamma^n \), Eq. (4.11)

\(\tau_i \) shear stress at the gas-liquid interface

\(\tau_{LG} \) friction at the gas liquid interface

\(\tau_{LS} \) friction at the liquid solid interface

\(\tau_p \) interfacial drag tension at pulsing inception

\(\phi \) Lockhart-Martinelli parameter, \(\left[\frac{\Delta P_{LG}}{\Delta P_L} \right]^{0.5} \)

\([-]\)

\([\text{Pa.m}^{-1}]\)

\([\text{Pa.m}^{-1}]\)

\([-]\)

\([-]\)

\([\text{Pa}]\)

\([\text{Pa}]\)

\([\text{Pa}]\)

\([\text{Pa}]\)

\([\text{kg m}^{-1} \text{s}^{-2}]\)

\([-]\)
NOMENCLATURE

\(\phi' \) modified Lockhart-Martinelli parameter, \(\frac{\sigma_{LG}}{\sigma_G}^{0.5} \) [-]

\(\phi_p \) surface shape factor of packing, \(a_s / d_p^2 \) [-]

\(\phi_s \) particle sphericity, Eq. (3.17) [-]

\(\phi \) model parameter, Larachi et al. (1993) [-]

\(\sigma \) liquid-phase surface tension [Nm\(^{-1}\)]

\(\sigma_a \) surface tension of \(\alpha \)-phase, [Nm\(^{-1}\)]

\[\psi \equiv \left(\frac{\sigma_w}{\sigma_L} \right) \left(\frac{\mu_L}{\mu_w} \left(\frac{\rho_w}{\rho_L} \right)^2 \right)^{1/3} \] [-]

\[\psi_{G} \] dimensionless pressure drop, \(\frac{1}{\rho_{0G}} \left(\frac{\Delta P}{Z} \right)_{LG} + \rho_{0G} \) [-]

\[\psi_{L} \] dimensionless pressure drop, \(\frac{1}{\rho_{0L}} \left(\frac{\Delta P}{Z} \right)_{LG} + \rho_{0L} \) [-]

\(\omega \) weights [-]

SUBSCRIPTS

cal calculated

exp experimental value

G gas phase

L liquid phase

LG two-phase

mod modified

P pulse/high-interaction regime

pred predicted value
NOMENCLATURE

\[\text{sph} \quad \text{for spherical particles} \]
\[\text{st} \quad \text{static} \]
\[T \quad \text{trickle/low-interaction regime} \]
\[\text{ve} \quad \text{viscoelastic liquid-phase} \]
\[\text{vi} \quad \text{viscoelastic liquid-phase} \]
\[w \quad \text{water} \]
\[\alpha \quad \text{fluid phase, liquid or gas} \]

ABBREVIATIONS

CMC \quad \text{carboxymethylcellulose} \\
HIR \quad \text{high-interaction regime} \\
HIR* \quad \text{high-interaction regime with foaming} \\
LIR \quad \text{low-interaction regime} \\
MRQE \quad \text{mean relative quadratic error} \\
PAA \quad \text{polyacrylamide} \\
PEO \quad \text{polyethyleneoxide} \\
TBR \quad \text{trickle bed reactor}