LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Three-phase reactors.</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Flow regimes in trickle bed reactors.</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Externally fully wetted and externally partially wetted particles in trickle-flow regime.</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Flow features in trickle-bed reactors.</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Regime flow map for foaming and non-foaming systems.</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Experimental set-up</td>
<td>68</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Modified Ubbelohde Viscometer.</td>
<td>75</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Differential capillary rise apparatus.</td>
<td>77</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Drop-weight apparatus</td>
<td>79</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Velocity distributions in steady, laminar shear flow between two parallel plates.</td>
<td>83</td>
</tr>
<tr>
<td>Figure 3.6a</td>
<td>Generalized chart for the nondimensional primary normal stress function given in Eq. 3.14 vs. shear rate for different values of N in Eq. 3.12.</td>
<td>85</td>
</tr>
<tr>
<td>Figure 3.6b</td>
<td>Generalized chart for the nondimensional primary normal stress function given in Eq. 3.14 divided by the square of the nondimensional viscosity vs. shear rate for different values of N in Eq. 3.12.</td>
<td>86</td>
</tr>
<tr>
<td>Figure 4.1.1</td>
<td>Model predictions for air-water system.</td>
<td>111</td>
</tr>
<tr>
<td>Figure 4.1.2</td>
<td>Parity between L_{exp} and L_{neural} at transition.</td>
<td>112</td>
</tr>
<tr>
<td>Figure 4.1.3</td>
<td>Effect of liquid-phase properties on regime transition (low to high interaction) (a) effect of surface tension; (b) effect of viscosity(c) effect of rheological parameters K & n (non-Newtonian viscoelastic fluids); (d) effect of</td>
<td>113</td>
</tr>
</tbody>
</table>
viscoelasticity (non-Newtonian viscoelastic fluids)

Figure 4.1.4: Parity between experimental data and different models. (a) Air-water on Glass beads-I; (b) Air-ppm surfactant in water on Glass beads-I; (c) Air-12ppm surfactant in water; (d) Air-water on Glass beads-II(e) Air-water on Solid-cylinders; (f) Air-water on Raschig rings; (g) Air-60% glycerol on Glass beads-I; (h) Air-77% glycerol on Glass beads-I. 115

Figure 4.1.5: Regime flow-map (Gianetto et al., 1978) 117

Figure 4.1.6: Proposed regime transition flow-map. 118

Figure 4.1.7: Parity between present model (Eq.8) and literature data 119

Figure 4.1.8: Parity between L_{exp} and L_{pred} present data. 120

Figure 4.1.9: Parity plot for Viscoelastic liquid-phase using Eq.(4.13) 121

Figure 4.1.10: Parity plot for viscoelastic liquid-phase using Eq.(4.19) 122

Figure 4.2.1: Effect of gas flow rate on two-phase pressure drop (Packing: Glass beads-I). 133

Figure 4.2.2: Effect of gas flow rate on two-phase pressure drop (Packing: Catalyst pellets). 154

Figure 4.2.3: Effect of gas flow rate on two-phase pressure drop (Packing: Solid cylinders). 155

Figure 4.2.4: Effect of gas flow rate on two-phase pressure drop (Packing: Glass beads-II). 156

Figure 4.2.5: Effect of gas flow rate on two-phase pressure drop (Packing: Raschig rings). 157

Figure 4.2.6a: Effect of porosity on two-phase pressure drop. 158

Figure 4.2.6b: Effect of porosity on two-phase pressure drop. 159

Figure 4.2.7a: Effect of particle sphericity on two-phase pressure drop. 160
LIST OF FIGURES

Figure 4.2.7b : Effect of particle sphericity on two-phase pressure drop. 161
Figure 4.2.8a : Effect of surface tension on two-phase pressure drop. 162
Figure 4.2.8b : Effect of surface tension on two-phase pressure drop. 163
Figure 4.2.9a : Effect of viscosity on two-phase pressure drop. 164
Figure 4.2.9b : Effect of viscosity on two-phase pressure drop. 165
Figure 4.2.10a : Effect of rheological parameters 'K' and 'n' on two-phase pressure drop. 166
Figure 4.2.10b : Effect of rheological parameters 'K' and 'n' on two-phase pressure drop. 167
Figure 4.2.11a : Effect of viscoelasticity on two-phase pressure drop. 168
Figure 4.2.11b : Effect of viscoelasticity on two-phase pressure drop. 169
Figure 4.2.12 : Parity plot for two-phase friction factor under low-interaction regime (different packings), using Eq. (4.2.5). 170
Figure 4.2.13 : Parity plot for two-phase friction factor for Raschig rings under low-interaction regime, using Eq. (4.2.5). 171
Figure 4.2.14 : Parity plot for two-phase friction factor for Raschig rings under low-interaction regime, using Eq. (4.2.6). 172
Figure 4.2.15 : Parity plot for experimental and calculated two-phase pressure drop, literature data under low-interaction regime, using Eq. (4.2.5). 173
Figure 4.2.16 : Parity plot for two-phase friction factor under high-interaction regime (different packings), using Eq. (4.2.7). 174
Figure 4.2.17 : Parity plot for two-phase friction factor for Raschig rings under high-interaction regime, using Eq. (4.2.7). 175
Figure 4.2.18: Parity plot for two-phase friction factor for Raschig rings under high-interaction regime, using Eq. (4.2.8). 176

Figure 4.2.19: Parity plot for two-phase friction factor for surfactant in water systems under low-interaction regime, using Eq. (4.2.9). 177

Figure 4.2.20: Parity plot for two-phase friction factor for viscous-Newtonian systems under low-interaction regime, using Eq. (4.2.10). 178

Figure 4.2.21: Parity plot for two-phase friction factor for viscous-Newtonian systems under high-interaction regime, using Eq. (4.2.11). 179

Figure 4.2.22: Parity plot for two-phase friction factor for viscoelastic non-Newtonian systems under low-interaction regime, using Eq. (4.2.12). 180

Figure 4.2.23: Parity plot for two-phase friction factor for viscoelastic non-Newtonian systems under high-interaction regime, using Eq. (4.2.13). 181

Figure 4.2.24: Parity plot for two-phase friction factor for viscoelastic non-Newtonian systems under high-interaction regime, using Eq. (4.2.13). 182

Figure 4.2.25: Two-phase friction factor dependence on Weissenberg No., Wi under high-interaction regime, using Eq. (4.2.14). 183

Figure 4.2.26: Two-phase friction factor for viscoelastic non-Newtonian liquid-phase under high-interaction regime, using Eq. (4.2.15). 184

Figure 4.3.1: Effect of gas flow rate on dynamic liquid saturation (Packing: Glass beads-I). 206

Figure 4.3.2: Effect of gas flow rate on dynamic liquid saturation (Packing: Catalyst pellets). 207

Figure 4.3.3: Effect of gas flow rate on dynamic liquid saturation (Packing: Solid cylinders). 208
LIST OF FIGURES

Figure 4.3.4 : Effect of gas flow rate on dynamic liquid saturation
(Packing: Glass beads II). 209

Figure 4.3.5 : Effect of gas flow rate on dynamic liquid saturation
(Packing: Raschig rings). 210

Figure 4.3.6a : Effect of bed porosity on dynamic liquid saturation. 211

Figure 4.3.6b : Effect of bed porosity on dynamic liquid saturation. 212

Figure 4.3.7a : Effect of bed configuration on dynamic liquid saturation. 213

Figure 4.3.7b : Effect of bed configuration on dynamic liquid saturation. 214

Figure 4.3.8a : Effect of surface tension on dynamic liquid saturation. 215

Figure 4.3.8b : Effect of surface tension on dynamic liquid saturation. 217

Figure 4.3.9a : Effect of viscosity on dynamic liquid saturation. 219

Figure 4.3.9b : Effect of viscosity on dynamic liquid saturation. 220

Figure 4.3.10a : Effect of Rheological parameters 'K' and 'n' on dynamic liquid saturation. 221

Figure 4.3.10b : Effect of Rheological parameters 'K' and 'n' on dynamic liquid saturation. 222

Figure 4.3.11a : Effect of viscoelasticity on dynamic liquid saturation. 223

Figure 4.3.11b : Effect of viscoelasticity on dynamic liquid saturation. 224

Figure 4.3.12 : Parity plot for dynamic liquid saturation (different packings). 225

Figure 4.3.13a : Parity plot for dynamic liquid saturation, low 226
surface tension non foaming liquid phase (LIR).

Figure 4.3.13b : Parity plot for dynamic liquid saturation, low surface tension foaming liquid phase (HIR). 226

Figure 4.3.14a : Parity plot for dynamic liquid saturation, Newtonian viscous liquid phase using Eq. (4.3.6). 227

Figure 4.3.14b : Parity between literature data and predicted dynamic liquid saturation using Eq. (4.3.6). 228

Figure 4.3.15a : Parity plot for dynamic liquid saturation, Non-Newtonian viscoelastic liquid-phase using Eq. (4.3.6a). 229

Figure 4.3.15b : Parity plot for dynamic liquid saturation, Non-Newtonian viscoelastic liquid-phase using Eq. (4.3.7). 230

Figure 4.3.16 : Non-Newtonian viscoelastic liquid-phase using Eq. (4.3.9). 231

Figure 5.1 : Flow through a single channel 233

Figure 5.2a : Adaptive parameter α_m as function of particle sphericity, low interaction regime. 249

Figure 5.2b : Adaptive parameter α_m as function of particle sphericity, high interaction regime. 249

Figure 5.3a : Parity between $\alpha_{m,exp}$ and $\alpha_{m,cal}$, low-interaction regime. 250

Figure 5.3b : Parity between $\alpha_{m,exp}$ and $\alpha_{m,cal}$, high-interaction regime. 250

Figure 5.4 : ϕ_{exp} versus X plots for low and high-interaction regimes 253

Figure 5.5a : Comparison of model due to Pinna et al. (2001) with experimental data for low-interaction regime. 254

Figure 5.5b : Comparison of model due to Pinna et al. (2001) with experimental data for high-interaction regime. 255
Figure 5.6: Comparison of present model Eq. (5.39) with best fit data due to Midoux et al. (1976). 257

Figure 5.7a: Comparison of present model Eq. (5.39) with data of Morsi et al. (1984). 258

Figure 5.7b: Comparison of present model Eq. (5.40) with Morsi et al. (1984) data. 258

Figure A2.1: \(N_1\) vs. \(\dot{\gamma}\), PAA 0.05% in distilled water 299

Figure A2.2: \(N_1\) vs. \(\dot{\gamma}\), PAA 0.075% in distilled water 301

Figure A2.3: \(N_1\) vs. \(\dot{\gamma}\), PAA 0.10% in distilled water 303