<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1-4</td>
</tr>
<tr>
<td>2</td>
<td>REVIEW OF LITERATURE</td>
<td>5-42</td>
</tr>
<tr>
<td>2.1</td>
<td>Laccases in the natural environment</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>The best reaction condition for laccases</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Occurrence and location of laccases</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Distribution of laccases in eukaryotes</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Distribution of laccases in prokaryotes</td>
<td>16</td>
</tr>
<tr>
<td>2.5 a.</td>
<td>Localization in the cell</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>General properties of laccases</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Factors influencing the properties of laccases</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Multiple molecular forms of laccases</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>Substrate specificity of laccases</td>
<td>20</td>
</tr>
<tr>
<td>2.10</td>
<td>Influence of pH on laccase activity and stability</td>
<td>20</td>
</tr>
<tr>
<td>2.11</td>
<td>Influence of temperature on laccase activity and stability</td>
<td>21</td>
</tr>
<tr>
<td>2.12</td>
<td>Influence of inhibitors on enzyme activity</td>
<td>21</td>
</tr>
<tr>
<td>2.13</td>
<td>Structure of fungal laccases</td>
<td>22</td>
</tr>
<tr>
<td>2.14</td>
<td>Catalytic properties of laccases</td>
<td>26</td>
</tr>
<tr>
<td>2.15</td>
<td>Purification and characterization</td>
<td>26</td>
</tr>
<tr>
<td>2.16</td>
<td>Influence of carbon and nitrogen source on laccase production</td>
<td>27</td>
</tr>
<tr>
<td>2.17</td>
<td>Induction of laccase</td>
<td>30</td>
</tr>
<tr>
<td>2.18</td>
<td>Influence of pH and temperature on laccase production</td>
<td>31</td>
</tr>
<tr>
<td>2.19</td>
<td>Production of laccases</td>
<td>31</td>
</tr>
<tr>
<td>2.19 a.</td>
<td>Submerged Fermentation (SMF)</td>
<td>31</td>
</tr>
<tr>
<td>2.19 b.</td>
<td>Solid State Fermentation (SSF)</td>
<td>32</td>
</tr>
<tr>
<td>2.20</td>
<td>Industrial applications of laccase</td>
<td>33</td>
</tr>
<tr>
<td>2.21</td>
<td>Food industry</td>
<td>35</td>
</tr>
</tbody>
</table>
2.22 Pulp & paper industry 35
2.23 Textile industry 37
2.24 Nano-biotechnology 38
2.25 Soil bioremediation 41
2.26 Synthetic chemistry 41
2.27 Cosmetics 41
2.28 Textile effluent treatment 42

3 MATERIALS AND METHODS 43-62
3.1 Chemicals 43
3.2 Gram staining 43
3.3 Spore staining 43
3.4 Carboxy methyl cellulose (CMC) 44
3.5 Pectinase 44
3.6 Amylase 44
3.7 Lipase 45
3.8 Protease 45
3.9 Mannanase 45
3.10 Screening and identification 45
3.10 a. Screening for laccase positive fungi 45
3.10 b. Identification of the fungi 46
3.11 Organism, culture conditions and screening of laccase producer 47
3.11 a. Organism 47
3.11 b. Screening 48
3.11 c. Culture conditions 48
3.12 Cultivation parameters for laccase production 49
3.12 a. The effect of different carbon sources on the laccase production by isolate Simplicillium sp. GSH 1 under conditions of Submerged Fermentation (SMF) and Solid State Fermentation (SSF) 49
3.12 b. The effect of different nitrogen sources on the laccase production by isolate *Simplicillium sp.* GSH 1 under conditions of Submerged Fermentation (SMF) and Solid State Fermentation (SSF)

3.13 Improvement of laccase production employing submerged fermentation (SMF)

3.14 Effect of CuSO₄ concentrations on laccase production

3.15 Effect of amino acids & their analogues and vitamins concentrations on laccase production

3.16 Glucose estimation

3.17 Enzyme and protein assay
 3.17 a. Laccase assay
 3.17 b. Protein concentration (96 well plate assay protocol)

3.18 Biomass estimation
 3.18 a. Determination of fungal dry weights

3.19 Optimization of culture conditions
 3.19 a. Determination of the optimum temperature
 3.19 b. Determination of the optimum pH

3.20 Mass production of the fungus *Simplicillium sp.* GSH 1 in fermentor - pilot scale

3.21 Enzyme concentration and purification
 3.21 a. Concentration of cell free supernatant by ultrafiltration
 3.21 b. Cation Exchange Chromatography by S sepharose
 3.21 c. Hydrophobic Interaction Chromatography
 3.21 d. Gel Permeation Chromatography
 3.21 e. Polyacrylamide gel electrophoresis (PAGE)
3.21 e. (i) Native PAGE 56
3.21 e. (ii) SDS-PAGE 56
3.21 e. (iii) Coomassie staining 57
3.21 e. (iv) Zymogram (Activity staining)

3.22 Characterization of purified laccase 57
3.22 a. Kinetic analysis of laccase 57
3.22 b. pH and temperature dependence 58
3.22 c. Effect of metal ions 58
3.22 d. Effect of inducers and inhibitors on Laccase activity 58

3.23 Evaluation of the Laccase preparation in some biotechnological applications 58
3.23 a. Decolourization of synthetic dyes by *Simplicillium* sp. GSH 1 laccase 58
3.23 b. Biobleaching of pulp 59
3.23 c. Pulp analysis 59
3.23 c. (i) Kappa number (T 236 cm -85) 59
3.23 c. (ii) Copper number (T 430 om-94) 59
3.23 c. (iii) Viscosity of pulp (T 230 om-94) 60
3.23 c. (iv) Burst factor (T 403 cm -50) 60
3.23 c. (v) Tensile strength (T 231 cm-96) 60
3.23 c. (vi) Brightness 60
3.23 c. (vii) Release of reducing sugars 60
3.23 c. (viii) Release of chromophores and hydrophobic compounds 61

3.24 Optimization of enzyme dose and reaction time for biobleaching of pulp. 61
3.24 a. Effect of laccase on biobleaching of chemically bleached pulp

3.25 SEM

3.25 a Wood degradation by *Simplicillium sp.* GSH 1

4 RESULTS AND DISCUSSION

4.1 Isolation, screening and selection of laccase producer

4.2 Characterization and identification of the fungus

4.2 a. Identification of the fungi

4.3 Time course of laccase production

4.4 Effect of temperature on the laccase activity

4.5 Effect of pH on the laccase activity

4.6 Effect of different carbon sources on the laccase production by *Simplicillium sp.* GSH 1 under conditions of SMF and SSF

4.7 Effect of different nitrogen sources on the laccase production by *Simplicillium sp.* GSH 1

4.8 Enhancement of laccase production by *Simplicillium sp.* GSH 1

4.9 Effect of amino acids and their analogues on laccase production

4.10 Effect of vitamins supplementation on laccase production

4.11 Laccase production in fermentor cultures

4.12 Purification of laccase from *Simplicillium sp.* GSH 1

4.13 Molecular weight determination

4.14 Determination of kinetic parameters

4.15 Substrates specificity and inhibition pattern

4.16 Effect of metal ions and inhibitors

4.17 Effect of pH and temperature on *Simplicillium sp.* GSH 1 laccase activity and stability
4.18 Evaluation of the \textit{Simplicillium sp. GSH 1} laccase preparation in some biotechnological applications

4.18 a. Decolourization of textile dyes with crude laccase from \textit{Simplicillium sp. GSH 1} 101

4.18 b. Decolourization of textile dyes with purified laccase from \textit{Simplicillium sp. GSH 1} 102

4.18 c. Application of \textit{Simplicillium sp. GSH 1} laccase in biobleaching of kraft pulp 104

4.18 c. (i) Biobleaching of kraft pulp 104

4.18 c. (ii) Optimization of laccase dose and reaction time for biobleaching 105

4.18 c. (iii) Effect of laccase prebleaching on CEHH bleaching sequences 106

4.19 Scanning Electron Microscopy (SEM) of wood chips 116

4.19 a. Wood degradation by \textit{Simplicillium sp. GSH 1} 117

5 \textbf{SUMMARY AND CONCLUSIONS} 118-120

\textbf{BIBLIOGRAPHY} 121-159

\textbf{LIST OF PUBLICATIONS}

\textbf{APPENDIX}