LITERATURE CITED

Edward Arnold London.

CASIDA, L. E. (1968). Industrial Microbiology. New York,
London and Sydney: John Wiley and Sons, Inc.

Pergamon Press.

John Wiley and Sons, Inc. New York.

oil and fat analysis London and New York:
Academic Press.

188 pp. W. H. Freeman and sons, San Francisco

Microbiology (ed. T. D. Brock), Sunderland Mass.,
pp 161-186.

DEIERKAUF, F. A. & BOOIJ,H. L. (1967). Changes in the
Phosphatide pattern of yeast cells in relation to
active carbohydrate transport. Biochimica et
Biophysica Acta 150, 214-225.

DEXTER, Y. & COOKE, R. C. (1984). Fatty acids sterols and
carotenoids of the psychrophilic. Mucor strictus
Soc. 83: 455-461.

Z. Lebensm-Untersuch. u-Forsch. 190, 14-26.

DOSCHER, C. K., KANE, J. H., CRAWALL, G. C. & STAEBNER,
W. H. (1941). Industrial applications of Fumaric
acid. Ind. Eny. Chem. 33, 315.

DUBOIS, M., GILLES, K. A., HENILTON, J. K., REBER, P. A. &
SMITH,F. (1956). Colorimetric method for
determination of sugars and related substances.

Figs. 48-50. Growth at different temperatures

50. *R. arrhizus*
Figs. 51-53. Growth with different H\(^+\)-ion concentrations

51. *A. corymbifera* 52. *A. spinosa*
53. *R. arrhizus*
Figs. 54-55. *A. corymbifera*. Growth with different days of incubation.
Figs. 56-57. *A. spinosa*. Growth with different days of incubation.
Figs. 58-59. *R. arrhizus.* Growth with different days of incubation.
Figs. 60-61. Growth of *A. corymbifera* with different carbon compounds.
Figs. 62–63. Growth of *A. spinosa* with different carbon compounds.
Figs. 64-65. Growth of *R. arrhizus* with different carbon compounds.
Figs. 66-68. Growth of *A. corymbifera* with different nitrogen compounds.
Figs. 69-71. Growth of *Absidia corymbifera* with different nitrogen compounds.
Figs. 72-74. Growth of *A. spinosa* with different nitrogen compounds.
Figs. 75-77. Growth of \textit{A. spinosa} with different nitrogen compounds.
Figs. 78-80. Growth of \textit{R. arrhizus} with different nitrogen compounds.
Figs. 81–83. Growth of *R. arrhizus* with different nitrogen compounds.
Figs. 96-98. TLC determination of the types of the neutral lipids in fat from biomass of three species of mucorales.

1. diacylglycerol (D.G.), 2. triacylglycerol (TG)
3. sterols (ST), 4. free fatty acid (FAA),
5. sterols esters (SE).
Figs. 99-101. TLC determination of types of phospholipids in fat from biomass of the three species of mucorales.

1, phosphatidylcholine (PC), 2, phosphatidylethanolamine (PE), 3, phosphatidylserine (PS) + phosphatidylinositol (PI), 4, lysophosphatidylcholine (LC), 5, lysophosphatidylethanolamine (LE).
Figs. 102-104. Haffkine flasks cultures of three species of mucorales of a laboratory scale fermentation.
102. A. corymbifera, 103. A. spinosa, 104. R. arrhizus
GROWTH AND SPORULATION OF ABSIDIA CORYMBIFERA (COHN) SACC. AND TROTTER AT DIFFERENT TEMPERATURES (°C)

GROWTH OF ABSIDIA SPINOSA Lendiner AT DIFFERENT TEMPERATURES (°C)

GROWTH AND SPORULATION OF RHIZOPUS ARRHZUS FISHER AT DIFFERENT TEMPERATURES (°C)
GROWTH AND SPORULATION OF ABSIDIA CORYMBIFERA
(COHN) SACC. AND TROTTER

WITH DIFFERENT DAYS OF INCUBATION
GROWTH AND SPORULATION OF ABSIDIA SPINOSA LENDNER
WITH DIFFERENT DAYS OF INCUBATION
GROWTH AND SPORULATION OF RHIZOPUS ARRHYHIZUS FISHER WITH DIFFERENT DAYS OF INCUBATION

58

GROWTH AND SPORULATION OF RHIZOPUS ARRHYHIZUS FISHER WITH DIFFERENT DAYS OF INCUBATION

59
GROWTH AND SPORULATION OF ABSIDIA CORYMBIFERA (COHN) SACC. AND TROTTER WITH DIFFERENT CARBON COMPOUNDS
GROWTH AND SPORELATION OF ABSEIA SPINOSA
LENDNER
GROWTH AND SPORULATION OF RHIZOPUS ARRHIIZUS FISHER
GROWTH AND SPORULATION OF ABSIDIA CORYMBIFERA (COHN) SACC. AND TROTTER WITH DIFFERENT NITROGEN COMPOUNDS

CONTROL	L-CYSTEINE	DL-ALANINE	DL-2 AMINO BUTYRIC ACID	L-ARGININE	DC-ASPARTIC ACID

GROWTH AND SPORULATION OF ABSIDIA CORYMBIFERA (COHN) SACC. AND TROTTER WITH DIFFERENT NITROGEN COMPOUNDS

CONTROL	NH₄CL	NH₄NO₃	(NH₄)PO₄	ASPARAGINE

GROWTH AND SPORULATION OF ABSIDIA CORYMBIFERA (COHN) SACC. AND TROTTER WITH DIFFERENT NITROGEN COMPOUNDS

CONTROL | UREA | (NH₄)SO₄ | KNO₃ | NaNO₃
GROWTH AND SPORULATION OF ABSIDIA SPINOSA LENDNER
WITH DIFFERENT NITROGEN COMPOUNDS

GROWTH AND SPORULATION OF ABSIDIA SPINOSA LENDNER
WITH DIFFERENT NITROGEN COMPOUNDS

[CONTROL] UREA GLYCINE (NH₄)PO₄
DL-THREONINE L-ORNITHINE

GROWTH AND SPORULATION OF ABSIDIA SPINOSA LENDNER
WITH DIFFERENT NITROGEN COMPOUNDS

[CONTROL] DL-TRYPTOPHAN (NH₄)SO₄ NH₄Cl NH₄NO₃
DL-ASPARTIC ACID

GROWTH AND SPORULATION OF ABSIDIA SPINOSA LENDNER
WITH DIFFERENT NITROGEN COMPOUNDS

[CONTROL] L-HISTIDINE KNO₃ NANO₃
L-CYSTEINE
GROWTH AND SPORULATION OF RHIZOPUS ARRHZUS FISHER WITH DIFFERENT NITROGEN COMPOUNDS

78

79

80
GROWTH AND SPORULATION OF RHIZOPUS ARRHIZUS WITH DIFFERENT NITROGEN COMPOUNDS
T.L.C. OF PHOSPHOLIPIDS OF Absidia Corymbifera

T.L.C. OF PHOSPHOLIPIDS OF Absidia Spinosa

T.L.C. OF PHOSPHOLIPIDS OF Rhizopus Arrhizus
GROWTH AND SPORULATION OF ABSIDIA CORYMBIFERA (COHN') SACC. AND TROTTER IN HAFKINE CULTURE FLASK (LABORATORY SCALE FERMENTATION)

102

GROWTH AND SPORULATION OF ABSIDIA SPINOSA (LENONER) IN HAFKINE CULTURE FLASK (LABORATORY SCALE FERMENTATION)

103

GROWTH AND SPORULATION OF RHIZOPUS ARRHIZUS (FISCHER) IN HAFKINE CULTURE FLASK (LABORATORY SCALE FERMENTATION)

104